Home
Class 12
MATHS
If n>1 then...

If `n>1` then

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of 1/x in the expansion of (1+x)^(n)(1+1/x)^(n) is (n!)/((n-1)!(n+1)!) b.((2n)!)/((n-1)!(n+1)!) c.((2n-1)!(2n+1)!)/((2n-1)!(2n+1)!) d.none of these

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If a_(1)=1,a_(n+1)=(1)/(n+1)a_(n),a ge1 , then prove by induction that a_(n+1)=(1)/((n+1)!)n in N .

If A=[(1,1,1),(1,1,1),(1,1,1)] then show that A^n=[(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1)),(3^(n-1),3^(n-1),3^(n-1))] .

If n-(1)/(n)=(1)/(4) then n+(1)/(n) is equal to:

If A=[111111111], then prove that A^(n)=[3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)3^(n-1)] for every positive integer n

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these