Home
Class 12
MATHS
if abc!=0 and if |[a,b,c],[b,c,a],[c,a,b...

if `abc!=0` and if `|[a,b,c],[b,c,a],[c,a,b]|=0` then `(a^3+b^3+c^3)/(abc)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c in R such that a^3+b^3+c^3=2 and |[a,b,c],[b,c,a],[c,a,b]|=0 then find abc

If a!=6,b,c satisfy |[a,2b,2c],[3,b,c],[4,a,b]|=0 ,then abc =

If a!=6,b,c satisfy det[[a,2b,2c3,b,c4,a,b]]=0, then abc

If a!=6,b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 then abc

Prove the following: [[a,b,c],[b,c,a],[c,a,b]]=3abc-a^3-b^3-c^3

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

Prove that: |[a, b, c],[a-b, b-c, c-a ], [b+c, c+a, a+b]|= a^3+b^3+c^3-3abc

If a ne 6, b , c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

|{:(a,b,c),(a-b,b-c,c-a),(b+c,c+a,a+b):}|=a^3+b^3+c^3-3abc