Home
Class 12
MATHS
If x@ + y^2 + z^2!=0, x=cy + bz, y = az ...

If `x@ + y^2 + z^2!=0, x=cy + bz, y = az + cx`, and `z = bx + ay`, then `a^2 + b^2 + c^2 + 2abc=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x ^(2) + y ^(2) + z ^(2)ne 0, x= cy + bz, y= az +cx, and z= bx + ay, a ^(2) + b ^(2) + c ^(2) + 2 abc is equal to

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

Given x=cy+bz,y=az+cx and z=bx+ay, then prove a^(2) +b^(2) +c^(2) +2abc =1.

If x = cy + bz, y = az + cx , z =bx + ay, then prove that x^2/(1-a^2)= y^2/(1-b^2)

Given x = cy +bz, y = az + cx, z = bx+ ay where x,y and z are not all zero, then a^2 + b^2 + c^2 + 2abc = ___________

If x^2+y^2+z^2 ne0, x=cy+bz,y=az+cxandz=bx+ay" then "a^2+b^2+c^2+2abc=