Home
Class 12
MATHS
if f(x)=|[sinx,1,0],[1,2sinx,1],[0,1,2si...

if `f(x)=|[sinx,1,0],[1,2sinx,1],[0,1,2sinx]|` then `int_(-pi/2)^(pi/2)f(x)dx` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If fx=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

If f(x)=x+sinx , then int_(pi)^(2pi)f^(-1)(x)dx is equal to

int_(0)^(pi)(x)/(1+sinx)dx .

int_(0)^(pi)(x)/(1+sinx)dx .

If delta(x)=|[1,cosx,1-cosx],[1+sinx,cosx,1+sinx-cosx],[sinx,sinx,1]|, then int_0^(pi/2)delta(x)dx is equal to

f(x) = min{2 sinx, 1- cos x, 1} then int_0^(pi)f(x) dx is equal to

Evaluation of definite integrals by subsitiution and properties of its : f(x)=|(sinx+sin2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)| then int_(0)^(pi/2)f(x)dx=……….

int_0^(pi/2) (sinx)/(1+Cos^2x)dx