Home
Class 12
MATHS
If [[a^2, b^2, c^2], [(a+1)^2, (b+1)^2, ...

If `[[a^2, b^2, c^2], [(a+1)^2, (b+1)^2, (c+1)^2], [(a-1)^2, (b-1)^2, (c-1)^2]] = k[[a^2, b^2, c^2], [a, b, c], [1, 1, 1]]` then k is

Promotional Banner

Similar Questions

Explore conceptually related problems

|[a^(2), b^(2), c^(2)], [(a+1)^(2), (b+1)^(2), (c+1)^(2)], [(a-1)^(2), (b-1)^(2), (c-1)^(2)]| =-4(a-b)(b-c)(c-a)

Using properties of determinant show that : |(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(b-1)^2,(c-1)^2)|=4|(a^2,b^2,c^2),(a,b,c),(1,1,1)|

det[[ Prove that :,c^(2)a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),[c-1)^(2)]]=4det[[a^(2),b^(2),c^(2)a,b,c1,1,1]]

Using the properties of determinants, prove the following |{:(a^2,b^2,c^2),((a+1)^2,(b+1)^2,(c+1)^2),((a-1)^2,(a-1)^2,(c-1)^2):}|=4|{:(a^2,b^2,c^2),(a,b,c),(1,1,1):}|

a^(2),b^(2),c^(2)(a+1)^(2),(b+1)^(2),(c+1)^(2)(a-1)^(2),(b-1)^(2),(c-1)^(2) then find the value of k

If |(a^2,b^2,c^2),((a+1)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

If |(a^2,b^2,c^2),((a+b)^2 ,(b+1)^2,(c+1)^2),((a-1)^2 ,(b-1)^2,(c-1)^2)| =k(a-b)(b-c)(c-a) then the value of k is a. 4 b. -2 c.-4 d. 2

" if " |{:(a^(2),,b^(2),,c^(2)),((a+1)^(2),,(b+1)^(2),,(c+1)^(2)),((a-1)^(2),,(b-1)^(2),,(c-1)^(2)):}|= k(a -b) (b-c) (c-a) then find the value of k.

If |a^2b^2c^2(a+1)^2(b+1)^2(c+1)^2(a-1)^2(b-1)^2(c-1)^2|=k(a-b)(b-c)(c-a), then find the value of kdot