Home
Class 12
MATHS
If two curves whose equations are ax^2 +...

If two curves whose equations are `ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0` and `a'x^2 + 2h'xy + b'y^2 + 2g' x + 2f' y + c = 0` intersect in four concyclic point., then

Promotional Banner

Similar Questions

Explore conceptually related problems

If two curves, whose equations are ax^2+2hxy+by^2+2gx+2fy+c=0 and a'x^2+2h'xy+b'y^2+2g'x+2f'y+c'=0 intersect in four concyclic points, prove that (a-b)/h=(a'-b')/(h')

If ax^(2) +2hxy + by^(2) + 2gx + 2fy + c = 0, find dy/dx.

If the pair of lines ax^(2) + 2hxy + by^(2)+ 2gx + 2fy + c = 0 intersect on the y-axis then

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

the equation ax^(2)+ 2hxy + by^(2) + 2gx + 2 fy + c=0 represents an ellipse , if

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then

If the pair of lines ax^2 +2hxy+ by^2+ 2gx+ 2fy +c=0 intersect on the y-axis then