Home
Class 11
MATHS
lim(x->1) (1-x+ln x)/(1+cos pi x)...

`lim_(x->1) (1-x+ln x)/(1+cos pi x)`

Text Solution

Verified by Experts

using L hospital rule
`(0-1-1/x)/(0- pisin pix)`
`= lim_(x->1) (1/x -1)/(-pi sin pix)`
again using l hospital rule
`= lim_(x->1) (-1/x^2)/(-pi^2 cos pi x)`
`= (-1/1)/(pi^2 cos pi)`
`= 1/(pi^2(-1))`
`= -1/pi^2`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(log(1-x))/(cot pi x)

The value of lim_(x rarr1)(log x)/(sin pi x) is

lim_ (x rarr1) (1 + ln x) ^ (sec [(pi x) / (2)])

lim_(x rarr1)(log x)/(x-1)=

Evaluate the following limit : lim_(x rarr 1)(1+cos pi x)/(1-x)^2 .

If lim_(x rarr0)(a^(sin x)-1)/(1+x-cos x)=lim_(x rarr1)(x-1)/(ln(x)) then a=

Find the value of |(lim_( x to 1) (x^x-1)/(x log x )) /( lim_( xto0) (log (1-3x))/x)|

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

Statement-1 : lim_(x to 0) (1 - cos x)/(x(2^(x) - 1)) = (1)/(2) log_(2) e . Statement : lim_(x to 0) ("sin" x)/(x) = 1 , lim_(x to 0) (a^(x) - 1)/(x) = log a, a gt 0

lim_ (x rarr pi) (1 + cos x) / ((pi-x) ^ (2))