Home
Class 12
MATHS
lim(x rarr1)(x^(2)-x*ln x+ln x-1)/(x-1)...

lim_(x rarr1)(x^(2)-x*ln x+ln x-1)/(x-1)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr1)(x^(3)-x^(2)log x+log x-1)/(x^(2)-1) =

Evaluate :lim_(x rarr1)(x^(2)+x log_(e)x-log_(e)x-1)/((x^(2)-1))

let a=lim_(x rarr1)((x)/(ln x)-(1)/(x ln x)),b=lim_(x rarr0)((x^(3)-16x)/(4x+x^(2))),c=lim_(x rarr0)(ln(1+sin x))/(x) and d=lim_(x rarr-1)((x+1)^(3))/(3[sin(x+1)-(x+1)]) then the matrix [[a,bc,d]]

underset( x rarr 1 ) ( "Lim") ( x^(2) - x. ln x + ln x - 1)/( x - 1)

lim_ (x rarr oo) (x ln (1+ (ln x) / (x))) / (ln x)

Evaluate lim_(x rarr-1)(log x^(2)-log((1)/(x^(4)))+log3)/(log((x^(3))/(-3)))

Evaluate the following limits : Lim_(x to 1) (x^(2) - x log x + log x - 1)/(x-1)

If lim_(x rarr0)(a^(sin x)-1)/(1+x-cos x)=lim_(x rarr1)(x-1)/(ln(x)) then a=

lim_ (x rarr1) (1-x + ln x) / (1 + cos pi x)

lim_(x rarr0^(+))(1)/(x^(ln (sin x)))