Home
Class 12
MATHS
Prove that: d/(dx)[x/2sqrt(a^2-x^2)+(a^2...

Prove that: `d/(dx)[x/2sqrt(a^2-x^2)+(a^2)/2sin^(-1)(x/a)]=sqrt(a^2-x^2]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: d/(dx)[x/2\ sqrt(a^2-x^2)+(a^2)/2sin^(-1)(x/a)]=sqrt(a^2-x^2)

Prove that : d/dx[x/2sqrt(a^2-x^2)+(a^2)/(2)sin^-1(x/a)]=sqrt(a^2-x^2)

Show that , d/(dx)[x/2sqrt(a^2-x^2)+a^2/2 sin^(-1)x/a]=sqrt(a^2-x^2)

Prove that: (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)((x)/(a))]=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)sin^(-1)(x)/(a)}=sqrt(a^(2)-x^(2))

Show that (d)/(dx)[(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)"sin"^(-1)(x)/(a)]=sqrt(a^(2)-x^(2))

Prove that (d)/(dx){(x)/(2)sqrt(a^(2)-x^(2))+(a^(2))/(2)(sin^(-1)x)/(a)}=sqrt(a^(2)-x^(2))

Show that, (d)/(dx) [(x)/(2) sqrt(a^(2)-x^(2)) +(a^(2))/(2) "sin"^(-1) (x)/(a)]=sqrt(a^(2)-x^(2))

(d)/(dx){x sqrt(a^(2)-x^(2))+a^(2)sin^(-1)((x)/(a))}

d/dx(tan^-1(x/sqrt(a^2-x^2))=