Home
Class 11
MATHS
[4sqrt(4)sin^(-1)a+sin^(-1)b+sin^(-1)c=p...

[4sqrt(4)sin^(-1)a+sin^(-1)b+sin^(-1)c=pi" in frose onlutio "fa],[a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2))=2abc*6]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then a sqrt(1-a^(2))+b sqrt(1-b^(2))+c sqrt(1-c^(2)) is equal to a+b+c( b )a^(2)b^(2)c^(2)2abc(d)4abc

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2)) will be 2a b c (b) a b c (c) 1/2a b c (d) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of asqrt((1-a^2))+bsqrt((1-b^2))+sqrt((1-c^2)) will be 2a b c (b) a b c (c) 1/2a b c (d) 1/3a b c

If sin^(-1)a+sin^(-1)b+sin^(-1)c=pi, then the value of ^( value of )+b sqrt((1-b^(2)))+sqrt((1-c^(2))) will be (A) 2abc(B)abc(C)(1)/(2)abc(D)(1)/(3)abc

sin ^ (- 1) a-cos ^ (- 1) b = sin ^ (- 1) (ab-sqrt (1-a ^ (2)) sqrt (1-b ^ (2)))

If 4\ cos^(-1)x+sin^(-1)x=pi , then the value of x is (a) 3/2 (b) 1/(sqrt(2)) (c) (sqrt(3))/2 (d) 2/(sqrt(3))

The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2)) (b) 1/2 (c) 1/(sqrt(3)) (d) 1/(sqrt(2))

The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2)) (b) 1/2 (c) 1/(sqrt(3)) (d) 1/(sqrt(2))

The value of alpha such that sin^(-1)2/(sqrt(5)),sin^(-1)3/(sqrt(10)),sin^(-1)alpha are the angles of a triangle is (-1)/(sqrt(2)) (b) 1/2 (c) 1/(sqrt(3)) (d) 1/(sqrt(2))