Home
Class 14
MATHS
(lim(n rarr oo)(1^(9)+2^(9)+3^(4)+cdots+...

(lim_(n rarr oo)(1^(9)+2^(9)+3^(4)+cdots+n^(4))/((n+1)^(a-1))[(na+1)+(na+2)+cdots-(na+n)]=(1)/(60)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

For a in R (the set of all real numbers),a!=-1)(lim)_(n rarr oo)((1^(a)+2^(a)++n^(a))/((n+1)^(a-1)[(na+1)+(na+2)+......(na+n)])=(1)/(60) Then a=(a)5 (b) 7(c)(-15)/(2) (d) (-17)/(2)

lim_ (n rarr oo) (1 ^ (3) + 2 ^ (3) ++ n ^ (3)) / ((n-1) ^ (4))

lim_(n to oo)(1^(9)+2^(9)+3^(9)+...+n^(9))/(n^(10))

lim_(n rarr oo)((n+1)^(4)-(n-1)^(4))/((n+1)^(4)+(n-1)^(4))

lim_(n rarr oo)(n(1^(3)+2^(3)+3^(3)+cdots n^(3))^(2))/((1^(2)+2^(2)+3^(2)+cdots+n^(2))^(3)) =

Find a for which lim_ (n rarr oo) (1 ^ (a) + 2 ^ (a) + 3 ^ (a) + ... + n ^ (a)) / ((n + 1) ^ (a- 1) [(na + 1) + (na + 2) + ... + (na + n)]) = (1) / (60)