Home
Class 12
MATHS
If q^2 - 4pr =0 , p gt 0 then the domain...

If `q^2 - 4pr =0 , p gt 0` then the domain of the function `f(x) = log(p x^3 +(p+q)x^2 +(q+r) x + r)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The roots of the given equation (p - q) x^2 + (q -r ) x + (r - p)=0 are

The roots of the equation (q- r) x^(2) + (r - p) x + (p - q)= 0 are

The roots of the equation (q-r)x^(2)+(r-p)x+(p-q)=0

The roots of the eqaution (q-r)x^(2)+(r-p)x+(p-q)=0 are

Given that q^2-p r ,0,\ p >0, then the value of |p q p x+q y q r q x+r y p x+q y q x+r y0| is- a. zero b. positive c. negative \ d. q^2+p r

The solution of equation (p+q-x)/(r)+(q+r-x)/(p)+(r+p-x)/(q)+(3x)/(p+q+r)=0 is

If p, q, r be real then the intervals in which, f(x)=|(x+q^(2),pq,pr),(pq,x+p^(2),qr),(pr,qr,x+r^(2))|

If p, q, r be real, then the intervals in which, f(x)=|(x+p^2,pq,pr),(pq,x+q^2,qr),(pr,qr,x+r^2)|