Home
Class 12
MATHS
" If "y=x+tan x," prove that "cos^(2)x*(...

" If "y=x+tan x," prove that "cos^(2)x*(d^(2)y)/(dx^(2))-2y+2x=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=x+tan x, show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0

If y=x+tan x, show that cos^(2)x(d^(2)y)/(dx^(2))-2y+2x=0

If y= x + tan x , show that cos^2 x (d^2 y)/(dx^2) -2y + 2x =0

If y=x+tan x , show that cos^2 x (d^2y)/(dx^2)-2y+2x=0

Find the second order derivative of the following functions If y = e^(tan x) , prove that cos^2 x(d^2 y)/(dx^2) - (1 +sin 2x) (dy)/(dx) = 0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))+2x(dy)/(dx)=0

If y= e^(tan x) then show that, (cos^(2)x) (d^(2)y)/(dx^(2))- (1+ sin 2x) (dy)/(dx)=0

If y=tan^(-1)x, prove that (1+x^(2))(d^(2)y)/(dx^(2))(2x)(dy)/(dx)=0

y=5cos x-3sin x prove that (d^(2)y)/(dx^(2))+y=0