Home
Class 10
MATHS
The expression (2^2+1)/(2^2-1)+(3^2+1)/(...

The expression `(2^2+1)/(2^2-1)+(3^2+1)/(3^2-1)+(4^2+1)/(4^2-1)+((2011)^2+1)/((2011)^2-1)` lies in the interval

Promotional Banner

Similar Questions

Explore conceptually related problems

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

3log 2 +(1)/(4) -(1)/(2)((1)/(4))^(2)+(1)/(3)((1)/(4))^(3)-….. =

(1)/(2)-(1)/(2).(1)/(2^(2))+(1)/(3).(1)/(2^(3))-(1)/(4).(1)/(2^(4))+.... =

The value of ((1)/(2)" of " 1(1)/(2))div(3(1)/(2)-1(1)/(4)) "of" 1(1)/(2)-1(1)/(2)div2(1)/(4)+1(1)/(3) is :

The value of ((1)/(2)" of "1(1)/(2))-:(3(1)/(2)-1(1)/(4))" of "1(1)/(2)-1(1)/(2)-:2(1)/(4)+1(1)/(3) is:

Evaluate (1) 2^(-3) (2)(-4)^(-2) (3)1/3^(-2) (4)(1/2)^(-5)

(1)/(log_(2)N)+(1)/(log_(3)N)+(1)/(nog_(4)N)+...+(1)/(log_(2011)N)=(1)/(log_(2011)N)

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+ . . . y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+ . . . . z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+ . . .then