Home
Class 12
MATHS
The value of tan^(-1)[(sqrt(1+x^2)+sqrt(...

The value of `tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))], |x|<1/2,x!=0`, is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=theta, |x|<1/2,x!=0 , is equal to:

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Show that : tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))]=pi/4+1/2cos^(-1)x^(2) .

If y = tan^(-1)((sqrt(1 + x^2) - sqrt(1 - x^2))/(sqrt(1 + x^2) + sqrt(1 - x^2))) , then show that (dy)/(dx) = x/(sqrt(1 - x^4))

Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2

If y=tan^(-1)[(sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))] for 0<|x|<1 ,find (dy)/(dx)