Home
Class 12
CHEMISTRY
A first order reaction has a rate consta...

A first order reaction has a rate constant of `5 xx 10^(-3) s^(-1)`. How long will `5.0 g` of this reaction take to reduce to `3.0 g` ?

A

34.07 s

B

7.57 s

C

10.10 s

D

15 g

Text Solution

Verified by Experts

The correct Answer is:
A

`t = (2.303)/(k) "log" (a)/((a - x))`
or `t = (2.303)/(15 xx 10^(-3)) "log" (5)/(3) = 34.07s`
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL KINETICS

    NCERT FINGERTIPS|Exercise Temperature Dependendence Of The Rate Of A Reaction|17 Videos
  • CHEMICAL KINETICS

    NCERT FINGERTIPS|Exercise Collision Theory Of Chemical Reactions|6 Videos
  • CHEMICAL KINETICS

    NCERT FINGERTIPS|Exercise MCQs|3 Videos
  • BIOMOLECULES

    NCERT FINGERTIPS|Exercise Assertion And Reason|15 Videos
  • CHEMISTRY IN EVERYDAY LIFE

    NCERT FINGERTIPS|Exercise Assertion And Reason|15 Videos

Similar Questions

Explore conceptually related problems

A first order reaction has a rate constant of 15 xx 10^(-3) s^(-1) . How long will 5.0 g of this reaction take to reduce to 3.0 g ?

A first order reaction has a rate constant of 1.15xx10^(-3) s^(-1) . How long will 5 g of this reactant take to reduce to 3 g ?

A first order reaction has a rate constant 1.15xx10^(-3)s^(-1) . How long will 5g of this reactant take to reduce to 3g ?

Concentration dependence of rate is called differential rate equation. Integrated differential equations give relation between directly measured experimental data i.e., concentration at different times and rate constant. The integrated rate equations are different for the reactions of differennt reaction orders. the first-order reaction has a rate constant 1.15xx10^(-3)s^(-1) . Q. How long will 5g of this reactant take to reduce to 3g?

A first order reaction has a rate constant, k = 5.5 xx 10^(-14) s^(-1) , calculate the half life of reaction.

A first order reaction has a specific rate constant of 2xx10^(-3)s^(-1) . How much time it will take for20 gm to reduce to 5 g ?

NCERT FINGERTIPS-CHEMICAL KINETICS-Integrated Rate Equation
  1. Observe the given graphs carefully. Which of the given orders are...

    Text Solution

    |

  2. Radioactive distintegration is an example of

    Text Solution

    |

  3. A first order reaction has a rate constant of 5 xx 10^(-3) s^(-1). How...

    Text Solution

    |

  4. In a first order reaction, the concentration of reactant decrease from...

    Text Solution

    |

  5. A first order reaction is 20% complete in 10 minutes. What is the spec...

    Text Solution

    |

  6. The decomposition of a substance follows first order kinetics. If its ...

    Text Solution

    |

  7. A first order reaction takes 40 min for 30% decomposition. Calculate t...

    Text Solution

    |

  8. The following data were obtained during the first order thermal decomp...

    Text Solution

    |

  9. A first order reaction has a rate constant 1.15xx10^(-3)s^(-1). How lo...

    Text Solution

    |

  10. The decomposition of dinitrogen pentoxide (N(2)O(5)) follows first ord...

    Text Solution

    |

  11. Half life of a first order reaction in 10 min. What % of reaction will...

    Text Solution

    |

  12. The half life for radioactive decay of .^(14)C is 5730 years. An archa...

    Text Solution

    |

  13. What will be the half-life of the first order reaction for which the v...

    Text Solution

    |

  14. The rate constant of first order reaction is 10^(-2)"min"^(-1). The ha...

    Text Solution

    |

  15. In a first order reaction, The concentration of reactant is reduced to...

    Text Solution

    |

  16. Calculate the half life of the reaction ArarrB, when the initial conce...

    Text Solution

    |

  17. In pseudo-unimolecular reactions :

    Text Solution

    |

  18. The value of rate of a pseudo first order reaction depends upon

    Text Solution

    |

  19. State one condition under which a bimolecular reaction may be kinetica...

    Text Solution

    |

  20. The hydrolysis of ethyl acetate is a reaction of : CH(3)COOC(2)H(5)+...

    Text Solution

    |