Home
Class 11
MATHS
^nC(n)^(n)C(r-1)=^(n+1)C(r)...

^nC_(n)^(n)C_(r-1)=^(n+1)C_(r)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ""^nC_r+^nC_(r-1)=^(n+1)C_r

Prove that .^(n+1)C_(r+1)+^nC_r+^nC_(r-1)=^(n+2)C_(r+1)

Prove that "^nC_r+2 ^(n)C_(r-1)+ ^(n)C_(r-2) = ^(n+2)C_r .

Show that , (.^(n)C_(r)+^(n)C_(r-1))/(.^(n)C_(r-1)+^(n)C_(r-2))=(.^(n+1)p_(r))/(r.^(n+1)p_(r-1))

Property :-( iii) nC_(r)+nC_(r-1)=(n+1)C_(i)

If sum_(r=0)^(n-1)((^nC_(r))/(nC_(r)+^(n)C_(r+1)))^(3)=(4)/(5) then n=

Write the expression ^nC_(r+1)+^(n)C_(r-1)+2xx^(n)C_(r) in the simplest form.

The value of nC_(r-3)3^(n)C_(r-2)+3^(n)C_(r-1)+nC_(r) is equal to

show that ^nC_r+ ^(n-1)C_(r-1)+ ^(n-1)C_(r-2)= ^(n+1)C_r

Show that .^nC_r+.^(n-1)C_(r-1)+.^(n-1)C_(r-2)=.^(n+1)C_r