Home
Class 11
MATHS
Prove the following by using the princip...

Prove the following by using the principle of mathematical induction for all `n in N` : `1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)+""dot""""dot""""dot""+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by using the principle of mathematical induction for all n in N 1+2+3+…….+n lt 1/8 (2n+1)^2

Prove the following by using the principle of mathematical induction for all n in N : 1 + 2 + 3 + ... + n <1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N :- 1 +2 + 3 +...+n < 1/8(2n+1)^2 .

Prove the following by using the principle of mathematical induction for all n in N 1+3+3^2 +…………+3^(n-1) = (3^n -1)/(2)

Prove the following by using the principle of mathematical induction for all n in N : 1/(1. 2. 3)+1/(2. 3. 4)+1/(3. 4. 5)+...+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2))

Prove the following by using the principle of mathematical induction for all n in N (1)/(1.2.3) + (1)/(2.3.4) + (1)/(3.4.5) + ……+ (1)/(n(n+1)(n+2)) = (n(n+3))/(4(n+1)(n+2))

Prove the following by using the principle of mathematical induction for all n in N :- 1 +3 + 3^2 +....+3^(n-1)=((3^n-1))/2 .

Prove the following by using the principle of mathematical induction for all n in Nvdots1+3+3^(2)+...+3^(n-1)=((3^(n)-1))/(2)

Prove the following by using the principle of mathematical induction for all n in N :- 1/(1.2.3)+1/(2.3.4)+1/(3.4.5)+...+1/(n(n+1)(n+2))=(n(n+3))/(4(n+1)(n+2)) .