Home
Class 11
MATHS
lim(x->1) {sqrt(x^2-1)+sqrt(x-1)}/{sqrt(...

`lim_(x->1) {sqrt(x^2-1)+sqrt(x-1)}/{sqrt(x^2-1)}`

Answer

Step by step text solution for lim_(x->1) {sqrt(x^2-1)+sqrt(x-1)}/{sqrt(x^2-1)} by MATHS experts to help you in doubts & scoring excellent marks in Class 11 exams.

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto1)(sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1)) if xgt1 .

Evaluate the following limits: lim_(xto0)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^(2)-1))

Knowledge Check

  • lim_(xrarr1^+)(sqrt(x^2-1)+sqrt(x-1))/(sqrt(x^2-1))=

    A
    `(1)/(2)`
    B
    `sqrt(2)+1`
    C
    1
    D
    `1+(1)/(sqrt(2))`
  • lim_(x rarr 1) (sqrt(x-1) + sqrt(x-1))/(sqrt(x^(2)-1)) =

    A
    (1/2)
    B
    `sqrt2`
    C
    1
    D
    `1/sqrt2`
  • Similar Questions

    Explore conceptually related problems

    Evaluate lim_(x rarr 1) (sqrt(x^(2)-1)+sqrt(x-1))/(sqrt(x^(2)-1))

    Evaluate the following limits : Lim_( xto 1) (sqrt((x^(2)-1 ))+sqrt((x-1)))/(sqrt((x^(2)-1)))

    lim_(xrarr0) (sqrt(1+x^2)- sqrt(1+x))/(sqrt(1+x^3)-sqrt(1+x))

    lim_(x rarr 1) (sqrt(x+1)-sqrt(5x-3))/(sqrt(2x+3)-sqrt(4x+1))= _________.

    lim_(x rarr1)((x-1)/(sqrt(x^(2)-1)+sqrt(x-1)))=

    lim_(xrarr0) (sqrt(x+1)+sqrt(x+4)-3)/(sqrt(x+2)-sqrt2)