Home
Class 12
MATHS
19.sin^2pi/18+sin^2(2pi)/18+sin^2(4pi)/1...

`19.sin^2pi/18+sin^2(2pi)/18+sin^2(4pi)/18+sin^2(8pi)/18+sin^2(7pi)/18+sin^2(5pi)/18 `

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin""(pi)/18 sin""(5pi)/18 sin""(7pi)/18 =

sin(pi/18)*sin(5pi/18)*sin(7pi/18)

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :

sin(pi/18)sin(5 pi/18)sin(7 pi/18)

"sin"^(2)pi/8" + sin"^(2)(3pi)/8" + sin"^(2)(5pi)/8" + sin"^(2)(7pi)/8=

sin^(2)""(pi)/(18)+sin^(2)""(2pi)/(18)+sin^(2)""(4pi)/(18)+sin^(2)""(8pi)/(18)+sin^(2)""(7pi)/(18)+sin^(2)""(5pi)/(18)=

2sin((pi)/8)sin((2pi)/8)sin((3pi)/8)sin((5pi)/8)sin((6pi)/8)sin((7pi)/8) = ?

sin^4(pi/8)+sin^4((2pi)/8)+sin^4((3pi)/8)+sin^4((4pi)/8)+sin^4((5pi)/8)+sin^4((6pi)/8)+sin^4((7pi)/8)=

Prove that sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2