Home
Class 10
MATHS
Find the value of p, when a/sqrt2 = b/s...

Find the value of p, when ` a/sqrt2 = b/sqrt3 = c/sqrt5 = (sqrt(2a) - sqrt(3b) + sqrt(5c))/p`.

Text Solution

Verified by Experts

The correct Answer is:
`p= 4`
Promotional Banner

Topper's Solved these Questions

  • RATIO AND PROPORTION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 2.2 (Long Answer Type Questions)|19 Videos
  • RATIO AND PROPORTION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE - 2.2 (Fill in the blanks)|1 Videos
  • QUADRATIC SURDS

    CALCUTTA BOOK HOUSE|Exercise Exercise -3.2|28 Videos
  • RECTANGULAR PARALLELOPIPED OR CUBOID

    CALCUTTA BOOK HOUSE|Exercise EXERCISE-(MCQs)|40 Videos

Similar Questions

Explore conceptually related problems

(a) The fourth-proportional of 8, 10 and 12 is _________ . (b) The value of p when a/sqrt3 = b/sqrt5 = c/sqrt7 = (sqrt(3a) + sqrt(5b) - sqrt(7c))/p is ______ .

(sqrt10 + sqrt18)/(sqrt18 - sqrt(3 - sqrt5)) =

If sqrt5 + sqrt3 = a, then sqrt5 - sqrt3 =

Find the value of (a)(3sqrt2)/(sqrt3 + sqrt6) - (4sqrt3)/(sqrt6 + sqrt2) + sqrt6/ (sqrt2 + sqrt3) (b) 1 + (6sqrt2)/(sqrt3 + sqrt6) - (8sqrt3)/(sqrt6 + sqrt2) + (2sqrt6)/(sqrt2 + sqrt3)

Answer any One question : Find the simplest value of : sqrt7(sqrt5 - sqrt2) - sqrt5(sqrt7 - sqrt2) + (2sqrt2)/(sqrt5+sqrt7)

Find the value of (sqrt5+2)div(sqrt3-1) .

Find the value of (sqrt2+sqrt3)div(sqrt2-sqrt3) .

Prove that sqrt(" "){8 sqrt3 + sqrt5 + sqrt(" ")(8 -2 sqrt15)}= 3 root(4)(3)