Home
Class 10
MATHS
If sec(alpha-beta)=sqrt(2) and sin(alph...

If `sec(alpha-beta)=sqrt(2) and sin(alpha+beta)=(1)/(2)`, then find the least positive values of `alpha and beta`.

Text Solution

Verified by Experts

Given that `sqrt2sin(alpha-beta)=1`
or `sin(alpha-beta)=(1)/(sqrt2)sin45^(@)`
`impliesalpha-beta=45^(@).........................(1)`
Also, `alpha+beta=90^(@)=..............................(2)[:'alpha,beta` are complementary.]
Now, adding (I) and (2) we get,
`2alpha=135^(@)or,alpha=(135^(@))/(2)=67.5^(@)`
From (2) we get, `beta=90^(@)-alpha=90^(@)-67.5^(@)=22.5^(@)`
Hence `alpha=67.5^(@)andbeta=22.5^(@)`.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE|28 Videos
  • TRIGONOMETRIC RATIOS AND TRIGONOMETRIC IDENTITIES

    CALCUTTA BOOK HOUSE|Exercise EXERCISE|66 Videos
  • VARIATION

    CALCUTTA BOOK HOUSE|Exercise EXERCISE|59 Videos

Similar Questions

Explore conceptually related problems

If "cosec" (alpha - beta) = 2/(sqrt3) and "sec" (alpha + beta) = sqrt(2) , find least positive values of alpha and beta .

IF cos (alpha +beta )=(5)/(13) and cos (alpha - beta )=(4)/(5), then find the value of tan 2 beta .

If cos (alpha -beta) =(sqrt3)/(2) and cos (alpha + beta)=1/e, then the number of ordered pairs (alpha , beta) such that alpha, betain [-pi, pi] is

If tan (alpha - beta) = 1, "sec" (alpha + beta) = 2/(sqrt3) , find positive magnitude of alpha and beta .

If sin ( alpha + beta ) =(4)/(5) and sin (alpha - beta ) =(5)/(13), find the value of tan 2 alpha

In sin alpha+ sin beta=(1)/(2) and cos alpha+ cos beta =(5)/(4) , find the value of tan alpha+tan beta .

If sin(alpha + beta) = 4/5 and sin (alpha - beta)= 5/13 , find the value of tan 2 alpha .

If "cot"(alpha+beta)=0, then "sin"(alpha+2beta) can be

Let alpha, beta be such that pi lt alpha lt beta lt 3pi, if sin alpha + sin beta =- (21)/(65) and cos alpha + cos beta =(27)/(65), then the value of cos ""(alpha - beta)/(2) is-

CALCUTTA BOOK HOUSE-TRIGONOMETRIC RATIOS OF COMPLEMENTARY ANGLES -EXERCISE
  1. If sec(alpha-beta)=sqrt(2) and sin(alpha+beta)=(1)/(2), then find the...

    Text Solution

    |

  2. If A, B, C are the angles of a triangle then tan ((B+C)/2)=

    Text Solution

    |

  3. (sin21^(@)30')/(cos68^(@)30')

    Text Solution

    |

  4. (sin52^(@)+cos38^(@))/(sin38^(@)+cos52^(@))

    Text Solution

    |

  5. If sec9theta=cosec9theta, then the value of theta is equal to

    Text Solution

    |

  6. If the sum of any two acute angles be 180^(@), then they are called cm...

    Text Solution

    |

  7. If sin(theta+36^(@))=costheta then the value of theta" is "27^(@)

    Text Solution

    |

  8. The complementary angle of 90^(@) is

    Text Solution

    |

  9. If in DeltaABC,angleC=90^(@) then 1+tan^(2)A

    Text Solution

    |

  10. If theta=0^(@) then the trigonometrical ratio tangent of complementary...

    Text Solution

    |

  11. Find the value of cos1^(@)cos2^(@)cos3^(@).............cos180^(@)

    Text Solution

    |

  12. If 0^(@)angletheta angle20^(@), then find the value of theta when sin^...

    Text Solution

    |

  13. If sin^(-1)x+sin^(-1)y+sin^(-1)z=(3pi)/(2), then then the value of (x...

    Text Solution

    |

  14. If X, Y, Z are the angles of a DeltaXYZ then prove that cos^(2)""(X)/...

    Text Solution

    |

  15. If x=acos(90^(@)-theta)andy=bcot(90^(@)-theta), then prove that (a^(2)...

    Text Solution

    |

  16. Prove that (1+sec22^(@)+cot68^(@))(1-cosec22^(@)+tan68^(@))=2

    Text Solution

    |

  17. If angleA+angleB=90^(@) then prove that 1+(cotA)/(cotB)=cosec^(2)A

    Text Solution

    |

  18. If alpha+beta=90^(@), then find the value of cotbeta+cosbeta-(cosbeta)...

    Text Solution

    |

  19. Find the value of (5sin75^(@)sin77^(@)+2cos13^(@)cos15^(@))/(cos15^(@)...

    Text Solution

    |

  20. If alpha+beta=90^(@) then prove that cosec^(2)alpha+cosec^(2)beta=cose...

    Text Solution

    |

  21. Prove that sec^(2)11^(@)-(1)/(tan^(2)79^(@))=1.

    Text Solution

    |