Home
Class 11
MATHS
If (dy)/(dx) = 1 + x + y + xy and y (-1)...

If `(dy)/(dx)` = 1 + x + y + xy and y (-1) = 0, then function y is

Promotional Banner

Similar Questions

Explore conceptually related problems

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

if ( dy )/(dx) =1 + x +y +xy and y ( -1) =0 , then the value of ( y (0) +3 - e^(1//2))

Solve: (dy)/(dx) = 1-x+y-xy

If x dy = y (dx + y dy), y > 0 and y (1) = 1, then y (−3) is equal to _________.

Solve dy/dx = xy + x + y + 1

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

If (dy)/dx = (xy)/(x^2 + y^2), y(1) = 1 and y(x) = e then x =

dy/dx = 2xy , y(0) = 1

Find dy/dx of the function : x^y+y^x = 1