Home
Class 11
MATHS
l(x)=[(x(3e^(1/x)+4))/(2-e^(1/x)), x!=0...

`l(x)=[(x(3e^(1/x)+4))/(2-e^(1/x)), x!=0; 0, x=0;`

Promotional Banner

Similar Questions

Explore conceptually related problems

Discuss the continuity and differentiability of the function f(x)={(|x|(3e^((1)/(2e))+4))/(2-e^((1)/(|x|))),x!=0x=0atx=0

Find the following function is differentiable at a given point or not? f(x)={x(e^((1//x))-e^((-1//x)))/(e^((1//x))+e^((-1//x))),\ x!=0 0,\ x=0

f (x) = (e^(1//x^(2)))/(e^(1//x^(2))-1) , x ne 0, f (0) = 1 then f at x = 0 is

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={{:(,(e^(1/x)-1)/(e^(1/x)+1),x ne 0),(,0,x=0):}

The function f(x)={(e^(1/x)-1)/(e^(1/x)+1),x!=0 \ \ \ \ \ \ \ 0,x=0 at x=0

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):}at x = 0