Home
Class 11
MATHS
If f(x) = { x/(1 + e^(1/x)) for x != 0,...

If `f(x)` = { `x/(1 + e^(1/x))` for `x != 0`, `0 for x = 0`, then the function `f(x) ` is differentiable for

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)={(x)/(1+e^((1)/(x))) for x!=0,0f or x=0 then the function f(x) is differentiable for

Given f(0)=0 and f(x)=(1)/(1-e^(-(1)/(x))) for x ne 0 . Then the function f(x) is -

If f(x)={:{((e^(1/x)-1)/(e^(1/x)+1)", for " x !=0),(1", for " x=0):} , then f is

If f(x) = {(1/(1+e^(1/x)), x ne 0),(0, x= 0):} then f(x) is

If f(x)=(e^(1//x)-1)/(e^(1//x)+1)" for "x ne 0, f(0)=0" then at x=0, f(x) is"

If f(x)={((1)/(1+e^(1//x))"," ,x ne 0),(0",", x =0):} then f(x) is :

The function f(x)= xcos(1/x^2) for x != 0, f(0) =1 then at x = 0, f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is

If f(x) = {{:(1/(1+e^(1//x)), x ne 0),(0,x=0):} then f(x) is