Home
Class 12
MATHS
lim(x->0)(1-cosx+2sinx-sin^3x-x^2+3x^4)/...

`lim_(x->0)(1-cosx+2sinx-sin^3x-x^2+3x^4)/(tan^3x-6sin^2x+x-5x^3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

lim_(x rarr 0) (1-cos 5x)/(sin3x . tan 2x) =

("lim")_(xvec0)(5sinx-7sin2x+3sin3x)/(x^2sinx)

("lim")_(xvec0)(5sinx-7sin2x+3sin3x)/(x^2sinx)

lim_ (n rarr0) (x sin ^ (2) 3x) / (tan ^ (2) 5x)