Home
Class 11
MATHS
If f(x) = cos^-1 (cos x), then at the p...

If `f(x) = cos^-1 (cos x)`, then at the points, where `f` is differentiabla, `f'(x)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

The function, f(x) = cos^(-1) (cos x) is

If f(x) =(1-x)/(1+x) then f(cos theta) is

Let f(x)={cos^2x; x e Q -cos^2x; xQ ', then set of points, where f(x) is continuous, is'

Let f:[-1,1] to R be a function defined by f(x)={x^(2)|cos((pi)/(x))| "for" x ne 0, "for "x=0 , The set of points where f is not differentiable is

The function,f(x)=cos^(-1)(cos x) is

If f(x) = (1-x)/(1+x) , then f[f(cos x)] =

Let f(x) = cos^(2) x + cos x +3 then greatest value of f(x) + least value of f(x) is equal to

If f(x)= |cos x- sin x| , then f'((pi)/(3)) is equal to …….

If f (x)= [{:( cos x ^(2),, x lt 0),( sin x ^(3) -|x ^(3)-1|,, x ge 0):} then find the number of points where f (x) =f )|x|) is non-difierentiable.