Home
Class 12
MATHS
If int ((x^2-x+1)/(x^2+1) ) e^(cot^(-1)x...

If `int ((x^2-x+1)/(x^2+1) ) e^(cot^(-1)x dx)=A(x) e^(cot^(-1)x)+c, A=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If int (x^(2)-x+1)/(x^(2)+1)e^(cot^(-1)x)dx=A(x)e^(cot^(-1)x)+c , then A(x) is equal to :

int((x^(2)-x+1)/(x^(2)+1))e^(cot-1)xdx=A(x)e^(cot-1)x+c,A=

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

int ((x ^(2) -x+1)/(x ^(2) +1)) e ^(cot^(-1) (x))dx =f (x) .e ^(cot ^(-1)(x)) +C where C is constant of integration. Then f (x) is equal to:

int (e^(cot^(-1)x))/(1+x^(2))dx

" 1) "int(cot^(-1)x)/(1+x^(2))dx=

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c

int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)+c (b) e^(tan^(-1)x)+c (c) -xe^(tan^(-1)x)+c (d) xe^(tan^(-1)x)+c