Home
Class 12
MATHS
f(x)=(cos^2x)/(1+cosx+cos^2x) and g(x)=k...

`f(x)=(cos^2x)/(1+cosx+cos^2x)` and `g(x)=ktanx+(1-k)sinx-x`, where `k in R, g'(x)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x) = (cos ^(2) x)/(1+ cos x+cos ^(2)x )and g (x) =lamda tan x+(1-lamda) sin x-x, where lamda in R and x in [0, pi//2). The values of 'lamda' such that g '(x) ge 0 for any x in [0, pi//2):

Let f(x) = tan^(-1) ((1+cos x)/(sinx)) and g (x) = tan^(-1) ((sinx)/(1-cos x)) int {f(x) - g (x)}dx =

Let f(x) = tan^(-1) ((1+cos x)/(sinx)) and g (x) = tan^(-1) ((sinx)/(1-cos x)) int {f(x)+g(x)}dx =

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

f(x)=sin^2x+cos^4x+2 and g(x)=cos(cosx)+cos(sinx) Also let period f(x) and g(x) be T_1 and T_2 respectively then

If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx) where 0 < x < 1, then (A) both 'f' and 'g' are increasing functions

If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx) where 0 < x < 1, then (A) both 'f' and 'g' are increasing functions