Home
Class 12
MATHS
YSolution of diffential equationL=Ydx x(...

YSolution of diffential equationL=Ydx x(A) xy ln(c/x) = 1(B) (x + y) enc/x = 1(C) (x + y2) ln(c/x) = 1 (D) xºy en c/x = 1

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of the differential equation log x (dy)/(dx) + (y)/(x) = sin 2x is a) y log | x | = C - (1)/(2) cos x b) y log |x| = C + (1)/(2) cos 2x c) y log | x| = C - (1)/(2) cos 2x d) xy log | x | = C - (1)/(2) cos 2x

If sin(x+y)=log(x+y) , then (dy)/(dx)= (a) 2 (b) -2 (c) 1 (d) -1

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)) is (A)tan^(-1)((x)/(y))^(2)=log y+c(B)tan^(-1)((y)/(x))=log x+c(C)tan^(-1)((x)/(y))=log x+c(D)tan^(-1)((y)/(x))=log y+c

The solution of the differential equation (dy)/(dx)=(x^(2)+xy+y^(2))/(x^(2)), is tan^(-1)((x)/(y))^(2)=log y+Ctan^(-1)((y)/(x))=log x+Ctan^(-1)((x)/(y))=log x+Ctan^(-1)((y)/(x))=log y+C

Find y(x) , if it satisfies the following differential equation (dy)/(dx)=(x-y)^2 , and given that y(1)=1 (A) -ln|(1-x+y)/(1+x-y)|=2(x-1) (B) ln|(2-y)/(2-x)=x+y-1 (C) ln|(1-x+y)/(1+x-y)|=2(x-1) (D) 1/2ln|(1-x+y)/(1+x-y)|+ln|x|=0

Find y(x) , if it satisfies the following differential equation (dy)/(dx)=(x-y)^2 , and given that y(1)=1 (A) -ln|(1-x+y)/(1+x-y)|=2(x-1) (B) ln|(2-y)/(2-x)=x+y-1 (C) ln|(1-x+y)/(1+x-y)|=2(x-1) (D) 1/2ln|(1-x+y)/(1+x-y)|+ln|x|=0

The solution of the differential equation xdy+ydx-sqrt(1-x^(2)y^(2))dx=0 is (A)sin^(-1)(xy)=C-x(B)xy=sin(x+c)(C)log(1-x^(2)y^(2))=x+c(D)y=x sin x+c

[[" Solution of the differential "],[" equation "(xy+y+x+1)dy=dx" ,is "],[[" (A) "y(y+1)-2ln|x+1|,=c],[" (B) "quad (y+1)^(2)+2ln|x+1|,=c],[" (C) "quad (y+1)^(2)-2ln|x+1|,=c],[" (D) "y(y+1)+2ln|x+1|,=c]]]