Home
Class 11
MATHS
Prove that 1+tanA Tan(A/2)=tanA cot(A/2)...

Prove that `1+tanA Tan(A/2)=tanA cot(A/2)-1=secA`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tanA(1+sec2A)=tan2A

Prove that: tanA(1+sec2A)=tan2A

Prove that (1+tan(A/2))/(1-tan(A/2))=secA+tanA

Prove that : 1+tan A tan frac (A)(2)= secA= tanA cot frac (A)(2)-1

Prove that (1)/(secA+tanA)=secA-tanA

Prove that: (tanA+secA-1)/(tan A -secA +1)= secA+tanA .

Prove that : (tanA+sinA)/(tanA-sinA)=(secA+1)/(secA-1)

Prove that : (tanA+sinA)/(tanA-sinA)=(secA+1)/(secA-1)

Prove that: " "( tan A + sinA)/(tanA - sinA) = (sec A +1)/(secA -1)

Prove that: " "( tan A + sinA)/(tanA - sinA) = (sec A +1)/(secA -1)