Home
Class 12
MATHS
If int(f(x))/(logsinx)dx=log*logsinx, th...

If `int(f(x))/(logsinx)dx=log*logsinx,` then f(x) is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If int (f(x))/(log (sin x))dx =log [log sin x]+c , then f(x) =

If int (f(x)dx)/(log sin x)= log sin x, then f(x)=....

inte^(x)(cotx+logsinx)dx=?

If int (1)/(f(x))dx=log [ f(x)]^(2)+c , then f(x) is equal to:

int(f'(x))/(f(x)log{f(x)})dx=

int (f'(x))/(f(x)log f(x))dx=

int ((1+cotx))/((x+logsinx))dx.