Home
Class 12
MATHS
If f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6...

If `f(x)=(x^2)/(2-2cosx);g(x)=(x^2)/(6x-6sinx)` where `0 < x < 1,` (A) both 'f' and 'g' are increasing functions (B) 'f' is increasing and 'g' is decreasing functions (C) 'f' is decreasing and 'g' is increasing functions (D) both 'f' and 'g' are decreasing functions

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

If u=f(x^3),v=g(x^2),f'(x)=cosx, and g'(x)=sinx, then (du)/(dv) is

f(x)=x^(3)-6x^(2)+11x-6,g(x)=x^(2)-3x+2

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

If y=f(x^(3)),z=g(x^(2)),f'(x),=cosx and g'(x)=sinx," then "(dy)/(dz) is

Let f(x) = |sinx| + |cosx|, g(x) = cos(cosx) + cos(sinx) ,h(x)={-x/2}+sinpix , where { } representsfractional function, then the period of

If f(x)=sinx+cosx, g(x)= x^(2)-1 , then g{f(x)} is invertible in the domain

If f(x)=sinx+cosx,g(x)=x^(2)-1 , then g(f(x)) is invertible in the domain :

If f(x)=sinx+cosx, g(x)=x^(2)-1, then g(f(x)) is invertible in the domain

If f(x)=x^(2), g(x)=x^(2)-5x+6 then (g(2)+g(2)+g(0))/(f(0)+f(1)+f(-2))=