Home
Class 11
MATHS
For any triangle ABC, prove that (cosA)/...

For any triangle ABC, prove that `(cosA)/a+(cosB)/b+(cosC)/c=(a^2+b^2+c^2)/(2a b c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In any triangle ABC, prove that : (cosA)/a+ (cosB)/b+(cosC)/c= (a^2+b^2+c^2)/(2abc) .

(cosA)/a+(cosB)/b+(cosC)/c=(a^(2)+b^(2)+c^(2))/(2abc)

(cosA)/a+(cosB)/b+(cosC)/c=(a^(2)+b^(2)+c^(2))/(2abc)

For any triangle ABC, prove that : (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

Show that cosA/a +cosB/b +cosC/c =(a^2 +b^2 +c^2 )/2abc

Show that (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc)

For DeltaABC , prove that, (cosA)/(a)+(cosB)/(b)+(cosC)/(c)=(a^(2)+b^(2)+c^(2))/(2abc) .

For any triangle ABC, prove that sin(B-C)/2=(b-c) /a ( cosA/2)

In a Delta ABC, Prove that, CosA/a + CosB/b + CosC/c = (a^2+b^2+c^2)/2

For any triangle ABC, prove that : a(cosC-cosB)=2(b-c)cos^(2)""(A)/(2)