Home
Class 10
MATHS
[" 28Ondividing the Polynomial "P(x)=x^(...

[" 28Ondividing the Polynomial "P(x)=x^(3)-3x^(2)+x+2" by a polynomial "g(x)" ,the "],[" quotient and remainder were "(x-2)" and "(-2x+4)" respectively.Find "g(x)" ."],[" OR "]

Promotional Banner

Similar Questions

Explore conceptually related problems

On dividing (x^(3)-3x^(2) + x +2) by a polynomial g(x), the quotient and remainder are (x-2) and (-2x+4) respectively. Find g(x).

On dividing x^(3) - 3x^(2) + x + 2 by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

On dividing (x^(3)-3x^(2)+x+2) by a polynomial g(x), the quotient and remainder are (x-2) and (-2x+4) respectively. Find g(x).

On dividing (x^(2)-3x^(2)+x+2) by a polynomial g(x), the quotient and remainder are (x-2) and (-2x+4) respectively. Find g(x).

On dividing x^(3)-3x^(2)+x+2 by a polynomial g(x), the quotient and the remainder were (x- 2) and (-2x+4) respectively.

On dividing x^(3)-3x^(2)+x+2 by a polynomial g(x), the quotient and remainder were x-2 and -2x+4, respectively. Find g(x).

On dividing x^(3)-3x^(2)+x+2 by a polynomial g(x) the quotient and remainder were x-2 and -2x+4 , respectively. Find g(x) .

On dividing x^(3)-3x^(2)+x+2 by a polynomial g(x) the quotient and remainder were x-2 and -2x+4 , respectively. Find g(x) .

On dividing x^(3)-3x^(2)+x+2 by a polynomial g(x) the quotient and remainder were x-2 and -2x+4 , respectively. Find g(x) .

On dividing x^(3)-3x^(2)+x+2 by a polynomial g(x) the quotient and remainder were x-2 and -2x+4 , respectively. Find g(x) .