Home
Class 11
MATHS
If alpha,beta be the roots of the equati...

If `alpha,beta` be the roots of the equation `u^2-2u+2=0` and if `cottheta=x+1,` then `((x+alpha)^n-(x+beta)^n)/(alpha-beta)` is equal to (a) `((sin n theta),(sin^n theta))` (b) `((cosn theta),(cos^n theta))` (c) `((sinn theta),cos^n theta))` (d) `((cosn theta),(sintheta^n theta))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of an equation x^(2)-2x cos theta+1=0 then the equation having alpha^(n) and beta^(n) is

If alpha and beta are the roots of x^(2)-2x+2=0 and cottheta=y+1,show ((y+alpha)^(n)-(y+beta)^(n))/(alpha-beta)=(sinntheta)/(sin^(n)theta)

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

If alpha and beta are 2 distinct roots of equation a cos theta + b sin theta = C then cos( alpha + beta ) =

Let f_(n)(theta)=(sin theta+sin2 theta+sin3 theta++sin n theta)/(cos theta+cos2 theta+cos3 theta++cos n theta)

If alpha,beta are the roots of the equation a cos theta+b sin theta=c, then prove that cos(alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2))

If alpha, beta are the roots of the equation a cos theta + b sin theta = c , then prove that cos(alpha + beta) = (a^2 - b^2)/(a^2+b^2) .

Prove that cos theta cos 2theta cos2^2 theta … cos 2^(n-1) theta = (sin2^n theta)/(2^n.sin theta) , for all n in N

If A=[[cos theta,sin theta-sin theta,cos theta]] then prove that A^(n)=[[cos n theta,sin n theta-sin n theta,cos n theta]],n in N

Prove that sin^(2)theta+sin^(2)2 theta+sin^(2)3 theta+....+sin^(2)n theta=(n)/(2)-(sin n theta cos(n+1)theta)/(2sin theta)