Home
Class 12
MATHS
[sin^(2)(sin^(-1)x+sin^(-1)y+sin^(-1)z)=...

[sin^(2)(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(2)(cos^(-1)x+cos^(-1)y+cos^(-1)z)],[tan(tan^(-1)x+tan^(-1)y+tan^(-1)z)=cot(cot^(-1)x+cot^(-1)y+cot^(-1)z)],[" If "sin^(-1)x+sin^(-1)y+sin^(-1)z=pi," show that "]

Promotional Banner

Similar Questions

Explore conceptually related problems

tan(tan^(-1)x+tan^(-1)y+tan^(-1)z)-cot(cot^(-1)x+cot^(-1)y+cot^(-1)z) is equal to

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

Show that : tan(tan^-1 x+tan^-1 y+tan^-1 z)=cot(cot^-1 x+cot^-1 y+cot^-1 z)

Prove the "tan"("tan"^(-1)x +"tan"^(-1) y + "tan"^(-1)z)="cot"("cot"^-1x +"cot"^(-1) y+"cot"^(-1) z)

If sin^(-1)x +cos^(-1)y +sin^(-1)z=2pi then 2x-z+y is :

Prove the sin^2(sin^(-1) x+sin^(-1) y+sin^(-1)z) =cos^2 (cos^(-1)x +cos^(-1) y+cos^(-1) z)

tan (sin ^(-1)x+sin ^(-1) y) +tan (cos^(-1)x+cos ^(-1)y)

If cos^(-1) x + cos^(-1) y + cos^(-1) z = pi , then find sin^(-1) x + sin^(-1) y + sin^(-1) z

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=

int_(-1)^(1)[tan^(-1){sin(cos^(-1)x)}+cot^(-1){cos(sin^(-1)x)}dx=