Home
Class 12
MATHS
lim(x rarr1)(ab^(x)-a^(x)b)/(x^(2)-1)=...

`lim_(x rarr1)(ab^(x)-a^(x)b)/(x^(2)-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(b^(x)-1)/(a^(x)-1)

lim_(x rarr1)((x+5)(x-1))/(x-1)

lim_(x rarr1)(x^(2)-2x+1)/(x^(2)-x)

Find value of a if lim_(x rarr1)(x^(4)-1)/(x-1)=lim_(x rarr a)(x^(3)-a^(3))/(x^(2)-a^(2))

lim_(x rarr1)(x^(2)-1)/(x-1)

lim_(x rarr1)(x^(2)-1)/(x-1)

lim_(x rarr1)(x^(3)-1)/(x-1)

If lim_(x rarr1)(ax^(2)+bx+c)/((x-1)^(2))=2, then lim_(x rarr1)((x-a)(x-b)(x-c))/(x+1) is

lim_(x rarr1)[(sqrt(x)-1)/(x-1)+(x^(2)-1)/(x^(2)-x)]