Home
Class 11
PHYSICS
Given vec(A)=5hat(i)+2hat(j)+4hat(k). Fi...

Given `vec(A)=5hat(i)+2hat(j)+4hat(k)`. Find (a) `|vec(A)|`

A

`sqrt(55)`

B

`sqrt(145)`

C

`sqrt(45)`

D

`sqrt(345)`

Text Solution

Verified by Experts

The correct Answer is:
C

(a) As `vec(A)=5hat(i)+2hat(j)+4hat(k)rArr|vec(A)|=sqrt(25+4+16)=sqrt(45)`
(b) cos `alpha=l=x/r=5/sqrt(45),cos beta=m=y/r=2/sqrt(45),`
`cos gamma=n=z/r=4/sqrt(45)`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise 3.1|19 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

If vec(a)=3hat(i)-2hat(j)+hat(k), vec(b)=2hat(i)-4 hat(j)-3 hat(k) , find |vec(a)-2 vec(b)| .

If vec(a)=(2hat(i)-hat(j)+hat(k)), vec(b)=(hat(i)-3hat(j)-5hat(k)) and vec(c)=(3hat(i)-4hat(j)-hat(k)) , find [vec(a)vec(b)vec(c)] and interpret the result.

Let vec(A)=2hat(i)-3hat(j)+4hat(k) and vec(B)=4hat(i)+hat(j)+2hat(k) then |vec(A)xx vec(B)| is equal to

If vec(a)=2hat(i)+3hat(j)+hat(k), vec(b)=hat(i)-2hat(j)+hat(k) and vec(c )=-3hat(i)+hat(j)+2hat(k) , find [vec(a)vec(b)vec(c )] .

Find vec(A).vec(b) when (i) vec(a)=hat(i)-2hat(j)+hat(k) and vec(b)=3 hat(i)-4 hat(j)-2 hat(k) (ii) vec(a)=hat(i)+2hat(j)+3hat(k) and vec(b)=-2hat(j)+4hat(k) (iii) vec(a)=hat(i)-hat(j)+5hat(k) and vec(b)=3 hat(i)-2 hat(k)

Find ( vec (a) xxvec (b)) and |vec(a) xx vec (b)| ,when (i) vec(a) = hat(i)-hat(j)+ 2hat(k) and vec(b)= 2 hat(i)+3 hat(j)-4hat(k) (ii) vec(a)= 2hat (i)+hat(j)+ 3hat(k) and vec(b)= 3hat(i)+5 hat(j) - 2 hat(k) (iii) vec(a)=hat(i)- 7 hat(j)+ 7hat(k) and vec(b) = 3 hat(i)-2hat(j)+2 hat(k) (iv) vec(a)= 4hat(i)+ hat(j)- 2hat(k) and vec(b) = 3 hat(i)+hat(k) (v) vec(a) = 3 hat(i) + 4 hat(j) and vec(b) = hat(i)+hat(j)+hat(k)

Find the angle between the vectors vec(a) and vec(b) , when (i) vec(a)=hat(i)-2hat(j)+3 hat(k) and vec(b)=3hat(i)-2hat(j)+hat(k) (ii) vec(a)=3 hat(i)+hat(j)+2hat(k) and vec(b)=2hat(i)-2hat(j)+4 hat(k) (iii) vec(a)=hat(i)-hat(j) and vec(b)=hat(j)+hat(k) .

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

If vec(a)= hat(i) - 2hat(j) + 5hat(k), vec(b)= 2hat(i) +hat(j)- 3hat(k) then what is (vec(a)- vec(b)).(3 vec(a) +vec(b)) equal to ?