Home
Class 11
PHYSICS
Prove that (vec(A)+2vec(B)).(2vec(A)-3ve...

Prove that `(vec(A)+2vec(B)).(2vec(A)-3vec(B))=2A^(2)+AB cos theta-6B^(2)`.

Text Solution

AI Generated Solution

To prove that \((\vec{A} + 2\vec{B}) \cdot (2\vec{A} - 3\vec{B}) = 2A^2 + AB \cos \theta - 6B^2\), we will expand the left-hand side and simplify it step by step. ### Step 1: Expand the Left-Hand Side We start with the expression: \[ (\vec{A} + 2\vec{B}) \cdot (2\vec{A} - 3\vec{B}) \] Using the distributive property of the dot product, we expand this: ...
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise 3.1|19 Videos
  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise 3.2|13 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

Prove that (vec(a) + vec(b)) xx (vec(a) - vec(b)) = 2 (vec(b) xx vec(a))

Prove that |vec(a) xx vec(b)| = sqrt(a^(2)b^(2) -(vec(a) -vec(b))^(2))

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

Prove that |vec(a)xx vec(b)|^(2)=|vec(a)|^(2)|vec(b)|^(2)-(vec(a).vec(b))^(2) =|(vec(a).vec(a),vec(a).vec(b)),(vec(a).vec(b),vec(b).vec(b))| .

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

Prove that (vec a + vec b) * (vec a-vec b) = | a | ^ (2) + | b | ^ (2) hArrvec a perpvec b

For any two vectors vec a and vec b ,prove that (vec a xxvec b)^(2)=|vec a|^(2)|vec b|^(2)-(vec a*vec b)^(2)

Prove that (vec a * vec b) ^ (2) <= vec a ^ (2) * vec b ^ (2)