Home
Class 11
PHYSICS
If vec(A)=2hat(i)+hat(j)+hat(k) and vec(...

If `vec(A)=2hat(i)+hat(j)+hat(k)` and `vec(B)=hat(i)+hat(j)+hat(k)` are two vectors, then the unit vector is

A

Perpendicular to `vec(A)` is `(-hat(j)+hat(k))1/sqrt(2)`

B

Parallel to `vec(A)` is `(2hat(i)+hat(j)+hat(k))/sqrt(6)`

C

Perpendicular to `vec(B)` is `((-hat(j)+hat(k))/sqrt(2))`

D

Parallel to `vec(A)` is `(hat(i)+hat(j)+hat(k))/sqrt(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, C

`vec(A)xxvec(B)=|(hat(i), hat(j), hat(k)) ,(2,1,1), (1 ,1 ,1)|`
`hat(i)(1-1)-hat(j)(2-1)+hat(k)(2-1)=-hat(j)+hat(k)`
The unit vector perpendicular to `vec(A)` and `vec(B)` is `((-hat(j)+hat(k))/sqrt(2))`.So choice (a) and (c ) are correct.
Any vector whose magnitude is K (constant) times `(2hat(i)+hat(j)+hat(k))` is parallel to `vec(A)`.
So, unit vector `(2hat(i)+hat(j)+hat(k))/sqrt(6)` is parallel to `vec(A)`.
So, choice (b) is correct.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    CENGAGE PHYSICS|Exercise Exercise Single Correct|51 Videos
  • TRAVELLING WAVES

    CENGAGE PHYSICS|Exercise Integer|9 Videos
  • WORK, POWER & ENERGY

    CENGAGE PHYSICS|Exercise Archives (integer)|4 Videos

Similar Questions

Explore conceptually related problems

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

If vec(a) = hat(i) + 2 hat(j) + 3 hat(k) and vec(b) = 2 hat(i) + 3 hat(j) + hat(k) , find a unit vector in the direction of ( 2 vec(a) + vec(b)) .

If vec(a)=4hat(i)-hat(j)+hat(k) and vec(b)=2hat(i)-2hat(j)+hat(k) , then find a unit vector parallel to the vector vec(a)+vec(b) .

If vec(P)=hat(i)+hat(j)-hat(k) and vec(Q)=hat(i)-hat(j)+hat(k) , then unit vector along (vec(P)-vec(Q)) is :

If vec(a) = hat(i) - hat(j) + hat(k). vec(b) = 2hat(i) + 3hat(j) + 2hat(k) and vec(c ) = hat(i) + m hat(j) + n hat(k) are three coplanar vectors and |vec(c )| = sqrt6 , then which one of the following is correct?

If vec(a)=hat(i)-hat(j)+hat(k), vec(b) = 2 hat(i) + 3 hat( j) + 2 hat(k) and vec(c) = hat(i) - m hat(j) + n hat(k) are three coplanar vectors and |vec(c)|=sqrt(6) , then which one of the following is correct?

If vec(a)=5hat(i)-hat(j)-3hat(k) and vec(b)=hat(i)+3hat(j)-5hat(k) , then show that the vectors (vec(a)+vec(b)) and (vec(a)-vec(b)) are perpendicular.

If vec(a)=2hat(i)-hat(j)+2hat(k) and vec(b)=6hat(i)+2hat(j)+3hat(k) , find a unit vector parallel to vec(a)+vec(b) .

Let vec(a) = hat(i) + hat(j) + hat(k), vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) & vec(b) , then x equals

Let vec(a) = hat(i) + hat(j) + hat(k),vec(b) = hat(i) - hat(j) + 2hat(k) and vec(c) = xhat(i) + (x-2)hat(j) - hat(k) . If the vector vec(c) lies in the plane of vec(a) and vec(b) then x equals