Home
Class 11
MATHS
Given alpha,beta, respectively, the fift...

Given `alpha,beta,` respectively, the fifth and the fourth non-real roots of units, then find the value of `(1+alpha)(1+beta)(1+alpha^2)(1+beta^2)(1+alpha^4)(1+beta^4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Select and write the correct answer from the given alternatives in each of the following: If alpha , beta are non-real cube roots of unity, then (1 + alpha) (1 + beta) (1 + alpha^4) (1 + beta^4) (1 + alpha^4) (1 + beta^4) …. Upto 2n factors is equal to

If alpha and beta are complex cube roots of unity, then (1-alpha)(1-beta)(1-(alpha)^2)(1-(beta)^2) =

If alpha and beta are the roots of the equation x^(2)-x-4=0 , find the value of (1)/(alpha)+(1)/(beta)-alpha beta :

If alpha and beta are imaginary cube roots of unity, then the value of (alpha)^4 + (beta)^28 + frac{1}{(alpha)(beta)} is

If alpha,beta are the roots of 1+x+x^2=0 then the value of (alpha)^4+(beta)^4+(alpha)^-4(beta)^-4 =

If alpha and beta be the roots of the equation x^(2)+3x+1=0 then the value of ((alpha)/(1+beta))^(2)+((beta)/(alpha+1))^(2)

If alpha, beta be the roots of the equation x^(2)+x+1=0 , the value of alpha^(4)beta^(4)-alpha^(-1)beta^(-1) is

If alpha and beta are two roots of x^(4)-x^(3)+1=0 then the value of (alpha^(3)(1-alpha))/(beta^(3)(1-beta))=

If alpha,beta are the roots of 1+x+x^(2)=0 then the value of alpha^(4)+beta^(4)+alpha^(-4)beta^(-4) =