Home
Class 11
MATHS
If p=a+bomega+comega^2;q=b+comega+aomega...

If `p=a+bomega+comega^2;q=b+comega+aomega^2` and `r=c+aomega+bomega^2` where `a,b,c!=0` and `omega` is the complex cube root of unity, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If p=a+bomega+comega^2,q=b+comega+aomega^2,a n dr=c+aomega+bomega^2,w h e r ea ,b ,c!=0a n domega is the complex cube root of unity, then

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is (a) -omega (b). omega^2 (c). 1 (d). -1

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is a.-omega b. omega^2 c. 1 d. -1

(a+bomega+comega^(2))/(c+aomega+bomega^(2))

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If x=a+b,y=aomega+bomega^(2),z=aomega^(2)+bomega then show that xyz=a^(3)+b^(3) "where " omega is a complex cube root of 1 . Find square root of - 2i.

(a-b)(aomega-bomega^(2))(aomega^(2)-bomega)