Initial height of liquid in the vessel `y=0.6xx2/3=0.4m`
Height of the container `=0.6m`
`y_("max")-y_("min")=(omega^(2)R^(2))/(2g)`……….i
`y_("max")=y+(omega^(2)R^(2))/(4g)`…………ii
`y_("min")=y-(omega^(2)R^(2))/(4g)`.........ii
`y_("min")=y=(omega^(2)R^(2))/(4g)`..........iii
a. `y_("max")=0.6m`
From eqn ii `0.6=0.4+(omega^(2)xx(0.3/2)^(2))/(4xx9.81)`
b. `y_("max")=0.6m, y_("min")=0impliesy_("max")=(R^(2)omega^(2))/(2g)`
`=0.6=((0.3)^(2)xxomega^(2))/(8xx9.81)implies omega=22.9rad//s`
c. The volume of paraboloid of revolution is hal the volume of the enclosing cylinder. volume of the liquid left in the vessel `=(1/2)xx0.6xxA`, where `A` is cross sectional area. Initial volume was `0.4Am^(3)`. Percentage of the liquid left `=(0.3A)/(0.4A)xx100=75%`