Home
Class 12
MATHS
int (-pi//2)^(pi//2) sin^(4) x cos^(6) x...

`int _(-pi//2)^(pi//2) sin^(4) x cos^(6) x dx` is equal to

A

`(3pi)/64`

B

`(3pi)/572`

C

`(3pi)/256`

D

`(3pi)/128`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx \), we can use the property of definite integrals and symmetry. ### Step 1: Use symmetry of the integrand The function \( \sin^4 x \cos^6 x \) is an even function. Therefore, we can simplify the integral as follows: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx \] ### Step 2: Use the integral property We can use the property of integrals of the form \( \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx \): \[ \int_0^{\frac{\pi}{2}} \sin^m x \cos^n x \, dx = \frac{1}{2} \cdot \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{m+n+2}{2}\right)} \] For our case, \( m = 4 \) and \( n = 6 \). ### Step 3: Calculate the Gamma functions Now we need to calculate the Gamma functions: - \( \Gamma\left(\frac{4+1}{2}\right) = \Gamma\left(\frac{5}{2}\right) \) - \( \Gamma\left(\frac{6+1}{2}\right) = \Gamma\left(\frac{7}{2}\right) \) - \( \Gamma\left(\frac{4+6+2}{2}\right) = \Gamma(6) \) Using the property of the Gamma function: - \( \Gamma\left(\frac{5}{2}\right) = \frac{3}{2} \Gamma\left(\frac{3}{2}\right) = \frac{3}{2} \cdot \frac{\sqrt{\pi}}{2} = \frac{3\sqrt{\pi}}{4} \) - \( \Gamma\left(\frac{7}{2}\right) = \frac{5}{2} \Gamma\left(\frac{5}{2}\right) = \frac{5}{2} \cdot \frac{3\sqrt{\pi}}{4} = \frac{15\sqrt{\pi}}{8} \) - \( \Gamma(6) = 5! = 120 \) ### Step 4: Substitute into the integral formula Now we substitute these values into the integral formula: \[ \int_0^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx = \frac{1}{2} \cdot \frac{\frac{3\sqrt{\pi}}{4} \cdot \frac{15\sqrt{\pi}}{8}}{120} \] ### Step 5: Simplify the expression Calculating the numerator: \[ \frac{3\sqrt{\pi}}{4} \cdot \frac{15\sqrt{\pi}}{8} = \frac{45\pi}{32} \] Now substituting back: \[ \int_0^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx = \frac{1}{2} \cdot \frac{\frac{45\pi}{32}}{120} = \frac{45\pi}{64 \cdot 120} = \frac{45\pi}{7680} \] ### Step 6: Final value of the integral Now, recall that \( I = 2 \int_0^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx \): \[ I = 2 \cdot \frac{45\pi}{7680} = \frac{90\pi}{7680} = \frac{3\pi}{256} \] Thus, the final answer is: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx = \frac{3\pi}{256} \]

To solve the integral \( I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx \), we can use the property of definite integrals and symmetry. ### Step 1: Use symmetry of the integrand The function \( \sin^4 x \cos^6 x \) is an even function. Therefore, we can simplify the integral as follows: \[ I = 2 \int_{0}^{\frac{\pi}{2}} \sin^4 x \cos^6 x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(-pi)^(pi) sin^(3) x cos^(2) x dx is equal to

int _(0)^(2pi) sin^(6) x cos^(5) x dx is equal to

int_(-pi//2)^(pi//2)cos^(6)x dx=

What is int_(-pi//6)^(pi//6) (sin^5 x cos^3 x)/x^4 dx equal to

What is int_(-pi/6)^(pi/6) (sin^(5)x cos^(3)x)/(x^(4)) dx equal to ?

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int_(pi)^((3pi)/2)(sin^(4)x+cos^(4)x)dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. Evaluate: ("lim")(nvecoo)[1/(n^2)sec^2 1/(n^2)+2//n^2sec^2 4/(n^2)++1/...

    Text Solution

    |

  2. The value of the integral int (0)^(pi//2) log | tan x| dx is

    Text Solution

    |

  3. int (-pi//2)^(pi//2) sin^(4) x cos^(6) x dx is equal to

    Text Solution

    |

  4. If f(x) = f(a+x) and int(0)^(a) f(x) dx = k, "then" int (0)^(na) f(x) ...

    Text Solution

    |

  5. The value of int(0)^(sqrt(2)) [ x^(2)] dx where [*] is the greatest i...

    Text Solution

    |

  6. int0^pi(x dx)/(a^2cos^2x+b^2sin^2x)

    Text Solution

    |

  7. l=int(-2)^(1)(tan^(-1)x+"cot"^(-1)(1)/(x))dx is equal to

    Text Solution

    |

  8. int(0)^(pi) x sin^(4) x dx is equal to

    Text Solution

    |

  9. If int (0)^(pi//2) sin^(6) dx = (5pi)/32 , then the value of int (...

    Text Solution

    |

  10. int (0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

    Text Solution

    |

  11. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  12. Let a, b and c be non - zero real numbers such that int (0)^(3) (3ax...

    Text Solution

    |

  13. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  14. Ifint(sinx)^1t^2f(t)dt=1=1-s inx ,w h e r ex in (0,pi/2), then find t...

    Text Solution

    |

  15. The value of int (2)^(4) { |x-2|+|x-3|} dx is

    Text Solution

    |

  16. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  17. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  18. int (0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) thet...

    Text Solution

    |

  19. The value of the integral int (-a)^(a) (xe^(x^(2)))/(1+x^(2)) dx is

    Text Solution

    |

  20. int (-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

    Text Solution

    |