Home
Class 12
MATHS
int(0)^(pi) x sin^(4) x dx is equal to...

`int_(0)^(pi) x sin^(4) x dx` is equal to

A

`(3pi)/16`

B

`(3pi^(2))/16`

C

`(16pi)/3`

D

`(16pi^(2))/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_0^{\pi} x \sin^4 x \, dx \), we can use the property of definite integrals that states: \[ \int_0^A f(x) \, dx = \int_0^A f(A - x) \, dx \] ### Step 1: Set up the integral Let \( I = \int_0^{\pi} x \sin^4 x \, dx \). ### Step 2: Use the property of definite integrals Using the property mentioned, we can express \( I \) as: \[ I = \int_0^{\pi} (\pi - x) \sin^4(\pi - x) \, dx \] ### Step 3: Simplify the sine function Using the identity \( \sin(\pi - x) = \sin x \), we have: \[ I = \int_0^{\pi} (\pi - x) \sin^4 x \, dx \] ### Step 4: Expand the integral Now we can expand this integral: \[ I = \int_0^{\pi} \pi \sin^4 x \, dx - \int_0^{\pi} x \sin^4 x \, dx \] ### Step 5: Combine the integrals Let \( J = \int_0^{\pi} \sin^4 x \, dx \). Then we can express \( I \) as: \[ I = \pi J - I \] ### Step 6: Solve for \( I \) Rearranging gives: \[ 2I = \pi J \implies I = \frac{\pi J}{2} \] ### Step 7: Calculate \( J \) Now we need to calculate \( J = \int_0^{\pi} \sin^4 x \, dx \). We can use the identity: \[ \sin^4 x = \left(\sin^2 x\right)^2 = \left(\frac{1 - \cos(2x)}{2}\right)^2 = \frac{1 - 2\cos(2x) + \cos^2(2x)}{4} \] Using \( \cos^2(2x) = \frac{1 + \cos(4x)}{2} \): \[ \sin^4 x = \frac{1}{4} \left(1 - 2\cos(2x) + \frac{1 + \cos(4x)}{2}\right) = \frac{1}{4} \left(\frac{3}{2} - 2\cos(2x) + \frac{1}{2}\cos(4x)\right) \] ### Step 8: Integrate \( J \) Now we can integrate: \[ J = \int_0^{\pi} \sin^4 x \, dx = \frac{1}{4} \left(\frac{3}{2}\int_0^{\pi} 1 \, dx - 2\int_0^{\pi} \cos(2x) \, dx + \frac{1}{2}\int_0^{\pi} \cos(4x) \, dx\right) \] Calculating each integral: 1. \( \int_0^{\pi} 1 \, dx = \pi \) 2. \( \int_0^{\pi} \cos(2x) \, dx = 0 \) (since it completes a full cycle) 3. \( \int_0^{\pi} \cos(4x) \, dx = 0 \) (same reason) Thus: \[ J = \frac{1}{4} \left(\frac{3}{2} \pi - 0 + 0\right) = \frac{3\pi}{8} \] ### Step 9: Substitute back to find \( I \) Now substituting back into the equation for \( I \): \[ I = \frac{\pi J}{2} = \frac{\pi \cdot \frac{3\pi}{8}}{2} = \frac{3\pi^2}{16} \] ### Final Answer Thus, the value of the integral \( \int_0^{\pi} x \sin^4 x \, dx \) is: \[ \boxed{\frac{3\pi^2}{16}} \]

To solve the integral \( I = \int_0^{\pi} x \sin^4 x \, dx \), we can use the property of definite integrals that states: \[ \int_0^A f(x) \, dx = \int_0^A f(A - x) \, dx \] ### Step 1: Set up the integral Let \( I = \int_0^{\pi} x \sin^4 x \, dx \). ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x dx is equal to

int_(0)^(2pi) sin^(5) (x/4) dx is equal to

int_(0)^(pi)sin^(2)x dx is equal to

int_0^(2pi) sin^5 (x/4) dx is equal to

int_(0)^( pi/4)sin^(4)x*dx

What is int_(0)^(pi)e^(x) sin x dx equal to ?

The value of int_(-pi//4)^(pi//4) x^(3) sin^(4) x dx is equal to

int_(0)^(pi//4) sin(x-[x]) dx is equalto

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. int0^pi(x dx)/(a^2cos^2x+b^2sin^2x)

    Text Solution

    |

  2. l=int(-2)^(1)(tan^(-1)x+"cot"^(-1)(1)/(x))dx is equal to

    Text Solution

    |

  3. int(0)^(pi) x sin^(4) x dx is equal to

    Text Solution

    |

  4. If int (0)^(pi//2) sin^(6) dx = (5pi)/32 , then the value of int (...

    Text Solution

    |

  5. int (0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

    Text Solution

    |

  6. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  7. Let a, b and c be non - zero real numbers such that int (0)^(3) (3ax...

    Text Solution

    |

  8. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  9. Ifint(sinx)^1t^2f(t)dt=1=1-s inx ,w h e r ex in (0,pi/2), then find t...

    Text Solution

    |

  10. The value of int (2)^(4) { |x-2|+|x-3|} dx is

    Text Solution

    |

  11. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  12. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  13. int (0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) thet...

    Text Solution

    |

  14. The value of the integral int (-a)^(a) (xe^(x^(2)))/(1+x^(2)) dx is

    Text Solution

    |

  15. int (-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

    Text Solution

    |

  16. The value of int (0)^(12a) (f(x))/(f(x)+f(12a-x))dx is

    Text Solution

    |

  17. If kint(0)^(1)xf(3x)dx=int(0)^(3)tf(t)dt, then the value of k is

    Text Solution

    |

  18. lim(nto oo)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2...

    Text Solution

    |

  19. lim(n->oo) (1^p+2^p+3^p+...........+n^p)/n^(p+1)

    Text Solution

    |

  20. Evaluate: ("lim")(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt...

    Text Solution

    |