Home
Class 12
MATHS
int (0)^(pi//4) [ sqrt(tan x)+ sqrt(cot ...

` int _(0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] ` dx is equal to

A

`sqrt(2) pi`

B

`pi/2`

C

`pi/(sqrt(2))`

D

`2 pi`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx, \] we can simplify the expression inside the integral. ### Step 1: Rewrite the integral We know that \(\cot x = \frac{1}{\tan x}\). Therefore, we can rewrite the integral as: \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\frac{1}{\tan x}} \right) \, dx = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \frac{1}{\sqrt{\tan x}} \right) \, dx. \] ### Step 2: Combine the terms Let \( u = \sqrt{\tan x} \). Then, the expression becomes: \[ I = \int_0^{\frac{\pi}{4}} \left( u + \frac{1}{u} \right) \, dx. \] ### Step 3: Use symmetry Notice that if we let \( x = \frac{\pi}{4} - t \), then \( dx = -dt \) and the limits change from \( 0 \) to \( \frac{\pi}{4} \) to \( \frac{\pi}{4} \) to \( 0 \). Thus, we have: \[ I = \int_{\frac{\pi}{4}}^0 \left( \sqrt{\tan\left(\frac{\pi}{4} - t\right)} + \sqrt{\cot\left(\frac{\pi}{4} - t\right)} \right)(-dt). \] Using the identities \(\tan\left(\frac{\pi}{4} - t\right) = \frac{1 - \tan t}{1 + \tan t}\) and \(\cot\left(\frac{\pi}{4} - t\right) = \frac{1 + \tan t}{1 - \tan t}\), we can show that the integral remains the same. ### Step 4: Add the two integrals Now we can add the two expressions for \( I \): \[ 2I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} + \sqrt{\tan\left(\frac{\pi}{4} - x\right)} + \sqrt{\cot\left(\frac{\pi}{4} - x\right)} \right) \, dx. \] ### Step 5: Evaluate the integral Since both integrals are equal, we can conclude that: \[ I = \int_0^{\frac{\pi}{4}} \sqrt{\tan x} \, dx + \int_0^{\frac{\pi}{4}} \sqrt{\cot x} \, dx. \] ### Step 6: Final result The integral evaluates to: \[ I = \frac{\pi}{4}. \] Thus, the final answer is: \[ \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx = \frac{\pi}{4}. \]

To solve the integral \[ I = \int_0^{\frac{\pi}{4}} \left( \sqrt{\tan x} + \sqrt{\cot x} \right) \, dx, \] we can simplify the expression inside the integral. ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(4))sqrt(tan x)dx

int_(0)^(pi//2)(1)/(sqrt(tan x)-sqrt(cot x))dx=

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

int_0^(pi//2) x(sqrt(tan x)+sqrt(cot x))dx equals

int sqrt(cot x)dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. int(0)^(pi) x sin^(4) x dx is equal to

    Text Solution

    |

  2. If int (0)^(pi//2) sin^(6) dx = (5pi)/32 , then the value of int (...

    Text Solution

    |

  3. int (0)^(pi//4) [ sqrt(tan x)+ sqrt(cot x)] dx is equal to

    Text Solution

    |

  4. Evaluate the following limit: lim(nto oo)[(n!)/(n^(n))]^(1//n)

    Text Solution

    |

  5. Let a, b and c be non - zero real numbers such that int (0)^(3) (3ax...

    Text Solution

    |

  6. The value of integral sum (k=1)^(n) int (0)^(1) f(k - 1+x) dx is

    Text Solution

    |

  7. Ifint(sinx)^1t^2f(t)dt=1=1-s inx ,w h e r ex in (0,pi/2), then find t...

    Text Solution

    |

  8. The value of int (2)^(4) { |x-2|+|x-3|} dx is

    Text Solution

    |

  9. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  10. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  11. int (0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) thet...

    Text Solution

    |

  12. The value of the integral int (-a)^(a) (xe^(x^(2)))/(1+x^(2)) dx is

    Text Solution

    |

  13. int (-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

    Text Solution

    |

  14. The value of int (0)^(12a) (f(x))/(f(x)+f(12a-x))dx is

    Text Solution

    |

  15. If kint(0)^(1)xf(3x)dx=int(0)^(3)tf(t)dt, then the value of k is

    Text Solution

    |

  16. lim(nto oo)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2...

    Text Solution

    |

  17. lim(n->oo) (1^p+2^p+3^p+...........+n^p)/n^(p+1)

    Text Solution

    |

  18. Evaluate: ("lim")(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt...

    Text Solution

    |

  19. If f(x) = tanx-tan ^(3) x + tan^(5) x - tan ^(7) x + ... infty for o...

    Text Solution

    |

  20. The value of int(0)^((pi)/(8))cos^(3)4 theta d theta is equal to -

    Text Solution

    |