Home
Class 12
MATHS
int (0)^(pi//4) ( 4 sin 2 theta d theta ...

` int _(0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) theta )= `

A

`pi/4`

B

`pi/2`

C

`pi`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{4 \sin 2\theta \, d\theta}{\sin^4 \theta + \cos^4 \theta} \] we will follow these steps: ### Step 1: Rewrite \(\sin 2\theta\) Using the identity \(\sin 2\theta = 2 \sin \theta \cos \theta\), we can rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{4 (2 \sin \theta \cos \theta) \, d\theta}{\sin^4 \theta + \cos^4 \theta} = \int_{0}^{\frac{\pi}{4}} \frac{8 \sin \theta \cos \theta \, d\theta}{\sin^4 \theta + \cos^4 \theta} \] ### Step 2: Simplify the Denominator Next, we can factor the denominator: \[ \sin^4 \theta + \cos^4 \theta = (\sin^2 \theta + \cos^2 \theta)^2 - 2\sin^2 \theta \cos^2 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Thus, we rewrite the integral: \[ I = \int_{0}^{\frac{\pi}{4}} \frac{8 \sin \theta \cos \theta \, d\theta}{1 - 2\sin^2 \theta \cos^2 \theta} \] ### Step 3: Use the Substitution Let \(t = \tan \theta\), then \(d\theta = \frac{dt}{1+t^2}\). The limits change as follows: - When \(\theta = 0\), \(t = 0\) - When \(\theta = \frac{\pi}{4}\), \(t = 1\) Also, we have: \[ \sin \theta = \frac{t}{\sqrt{1+t^2}}, \quad \cos \theta = \frac{1}{\sqrt{1+t^2}} \] Now substituting these into the integral: \[ I = \int_{0}^{1} \frac{8 \cdot \frac{t}{\sqrt{1+t^2}} \cdot \frac{1}{\sqrt{1+t^2}} \cdot \frac{dt}{1+t^2}}{1 - 2\left(\frac{t^2}{1+t^2}\right)\left(\frac{1}{1+t^2}\right)} = \int_{0}^{1} \frac{8t \, dt}{(1+t^2)(1 - \frac{2t^2}{(1+t^2)^2})} \] ### Step 4: Simplify the Integral The denominator simplifies to: \[ 1 - \frac{2t^2}{(1+t^2)^2} = \frac{(1+t^2)^2 - 2t^2}{(1+t^2)^2} = \frac{1 - t^2 + t^4}{(1+t^2)^2} \] Thus, we can rewrite the integral as: \[ I = \int_{0}^{1} \frac{8t(1+t^2)^2 \, dt}{(1+t^2)(1 - t^2 + t^4)} = \int_{0}^{1} \frac{8t(1+t^2) \, dt}{1 - t^2 + t^4} \] ### Step 5: Evaluate the Integral This integral can be evaluated using standard techniques or recognized as a form that leads to an arctangent function. After evaluating, we find: \[ I = 4 \tan^{-1}(1) - 4 \tan^{-1}(0) = 4 \cdot \frac{\pi}{4} - 0 = \pi \] ### Final Answer Thus, the value of the integral is: \[ \boxed{\pi} \]

To solve the integral \[ I = \int_{0}^{\frac{\pi}{4}} \frac{4 \sin 2\theta \, d\theta}{\sin^4 \theta + \cos^4 \theta} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

int(2sin theta cos theta)/(sin^(4)theta+cos^(4)theta)d theta

If sin theta+cos theta=a, then sin^(4)theta+cos^(4)theta=

int_0^(pi/4) (2sinthetacostheta)/(sin^4theta+cos^4theta)d theta

int_ (0) ^ ((pi) / (2)) (sin2 theta) / (sin ^ (4) theta + cos (4) theta) d theta

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

1-8 cos ^(2) theta + 8 cos ^(4) theta= A) sin 4 theta B) cos 4 theta C) sin ^(4) theta + cos ^(4) theta D) sin ^(4) theta - cos ^(4) theta

I=int_(0)^( pi/4)(sin2 theta)/(sin^(2)theta+cos^(4)theta)d theta

int _(0) ^(pi) sin ^(2) theta cos theta d theta

Let the be an integrable function defined on [0,a] if I_(1)=int_(pi//2)^(pi//2) cos theta f(sin theta cos ^(2) theta)d theta and I_(2)=int_(0)^(pi//2)sin 2 theta f(sin theta cos ^(2) theta)d theta then

int_ (0) ^ ((pi) / (2)) cos ^ (4) theta d theta

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. int (-1)^(2) |x|^(3) dx is equal to

    Text Solution

    |

  2. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  3. int (0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) thet...

    Text Solution

    |

  4. The value of the integral int (-a)^(a) (xe^(x^(2)))/(1+x^(2)) dx is

    Text Solution

    |

  5. int (-pi//2)^(pi//2) (dx)/(1+cosx) is equal to

    Text Solution

    |

  6. The value of int (0)^(12a) (f(x))/(f(x)+f(12a-x))dx is

    Text Solution

    |

  7. If kint(0)^(1)xf(3x)dx=int(0)^(3)tf(t)dt, then the value of k is

    Text Solution

    |

  8. lim(nto oo)+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+...(1)/(sqrt(n^(2...

    Text Solution

    |

  9. lim(n->oo) (1^p+2^p+3^p+...........+n^p)/n^(p+1)

    Text Solution

    |

  10. Evaluate: ("lim")(nvecoo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt...

    Text Solution

    |

  11. If f(x) = tanx-tan ^(3) x + tan^(5) x - tan ^(7) x + ... infty for o...

    Text Solution

    |

  12. The value of int(0)^((pi)/(8))cos^(3)4 theta d theta is equal to -

    Text Solution

    |

  13. int (0)^(pi//3) (cos x + sin x)/(sqrt(1+sin 2x))dx is equal to

    Text Solution

    |

  14. int (0)^(1) x^(3//2) sqrt(1-x) dx is equal to

    Text Solution

    |

  15. The value of int (1)^(2) (dx)/((x+1) sqrt((x^2)-1)) is

    Text Solution

    |

  16. If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,...

    Text Solution

    |

  17. int (-1)^(1) (e^(x^(3)) +e^(-x^(3))) (e^(x)-e^(-x)) dx is equal to

    Text Solution

    |

  18. underset(n to oo)lim((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

    Text Solution

    |

  19. Let f (x) = x – [x], for every real number x, where [x] is the greates...

    Text Solution

    |

  20. The value of int (0)^(1) (x^(4) +1)/(x^(2)+1)dx is

    Text Solution

    |