Home
Class 12
MATHS
The value of int (0)^(1) (x^(4) +1)/(x^...

The value of ` int _(0)^(1) (x^(4) +1)/(x^(2)+1)dx ` is

A

`1/6(3-4pi)`

B

`1/6 (3pi+4)`

C

`1/6(3+4pi)`

D

`1/6(3pi-4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^1 \frac{x^4 + 1}{x^2 + 1} \, dx \), we can break it down step by step. ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{x^4 + 1}{x^2 + 1} = \frac{x^4 - 1 + 2}{x^2 + 1} = \frac{(x^4 - 1) + 2}{x^2 + 1} \] This allows us to separate the integral into two parts: \[ \int_0^1 \frac{x^4 + 1}{x^2 + 1} \, dx = \int_0^1 \frac{x^4 - 1}{x^2 + 1} \, dx + \int_0^1 \frac{2}{x^2 + 1} \, dx \] ### Step 2: Simplify the first integral Next, we simplify the first integral: \[ \int_0^1 \frac{x^4 - 1}{x^2 + 1} \, dx = \int_0^1 \frac{(x^2 - 1)(x^2 + 1)}{x^2 + 1} \, dx = \int_0^1 (x^2 - 1) \, dx \] The \(x^2 + 1\) terms cancel out. ### Step 3: Evaluate the first integral Now we evaluate the integral: \[ \int_0^1 (x^2 - 1) \, dx = \int_0^1 x^2 \, dx - \int_0^1 1 \, dx \] Calculating each part: \[ \int_0^1 x^2 \, dx = \left[ \frac{x^3}{3} \right]_0^1 = \frac{1}{3} \] \[ \int_0^1 1 \, dx = [x]_0^1 = 1 \] Thus, \[ \int_0^1 (x^2 - 1) \, dx = \frac{1}{3} - 1 = -\frac{2}{3} \] ### Step 4: Evaluate the second integral Now we evaluate the second integral: \[ \int_0^1 \frac{2}{x^2 + 1} \, dx = 2 \int_0^1 \frac{1}{x^2 + 1} \, dx \] The integral \( \int \frac{1}{x^2 + 1} \, dx \) is known to be \( \tan^{-1}(x) \): \[ \int_0^1 \frac{1}{x^2 + 1} \, dx = \left[ \tan^{-1}(x) \right]_0^1 = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} - 0 = \frac{\pi}{4} \] Thus, \[ \int_0^1 \frac{2}{x^2 + 1} \, dx = 2 \cdot \frac{\pi}{4} = \frac{\pi}{2} \] ### Step 5: Combine results Now we can combine the results from the two integrals: \[ \int_0^1 \frac{x^4 + 1}{x^2 + 1} \, dx = -\frac{2}{3} + \frac{\pi}{2} \] ### Final Answer Thus, the value of the integral is: \[ \int_0^1 \frac{x^4 + 1}{x^2 + 1} \, dx = \frac{\pi}{2} - \frac{2}{3} \]

To solve the integral \( \int_0^1 \frac{x^4 + 1}{x^2 + 1} \, dx \), we can break it down step by step. ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{x^4 + 1}{x^2 + 1} = \frac{x^4 - 1 + 2}{x^2 + 1} = \frac{(x^4 - 1) + 2}{x^2 + 1} \] This allows us to separate the integral into two parts: ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)(x^(2))/(1+x^(2))dx is

int_(0)^(2)((x^(4)+1))/((x^(2)+1))dx

The value of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2))dx is/are (a) (22)/(7)-pi( b) (2)/(105)( c) 0 (d) (71)/(15)-(3 pi)/(2)

The value of int_(0)^(1) x^(2) (1- x)^(9) dx is

The value of int_(0)^(2)|1-x|dx

The value(s) of int_(0)^(1)(x^(4)(1-x)^(4))/(1+x^(2)) dx is (are)

The value of int_(1)^(4){x}^([x])dx

The value of int_0^1 (x^(3))/(1+x^(8))dx is

The value of int(x^(2)-1)/(x^(4)+1)dx is

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. underset(n to oo)lim((1)/(n)+(1)/(n+1)+...+(1)/(3n)) is equal to

    Text Solution

    |

  2. Let f (x) = x – [x], for every real number x, where [x] is the greates...

    Text Solution

    |

  3. The value of int (0)^(1) (x^(4) +1)/(x^(2)+1)dx is

    Text Solution

    |

  4. The value of overset(5)underset(3)int (x^(2))/(x^(2)-4)dx, is

    Text Solution

    |

  5. The value of int (0)^(pi//2) ((sin x + cos x)^(2))/(sqrt(1+sin 2x) dx...

    Text Solution

    |

  6. int (0)^(a) sqrt(a^(2) - x^(2)) dx is equal to

    Text Solution

    |

  7. The value of int(e^(-1))^(e) (dt)/(t(t+1)) is equal to

    Text Solution

    |

  8. The value of int (1)^(e) 10^(log(e)x) dx is equal to

    Text Solution

    |

  9. If int (2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

    Text Solution

    |

  10. int (0)^(oo) (dx)/((x+ sqrt(x^(2)+1))^(3)) is equal to

    Text Solution

    |

  11. The value of the integral int (-pi//2)^(pi//2) sqrt(cos x - cos ^(3) ...

    Text Solution

    |

  12. The value of I=overset(0)underset(-2)int{x^(3)+3x^(2)+3x+3+(x+1)cos(...

    Text Solution

    |

  13. int (alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

    Text Solution

    |

  14. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  15. The value overset(2)underset(-2)int {p" In"((1+x)/(1-x))+q" In "((1-...

    Text Solution

    |

  16. Let F (x) = f(x) + f ((1)/(x)), where f (x) = int (1) ^(x ) (log t)/(1...

    Text Solution

    |

  17. If 2f(x) - 3 f(1//x) = x," then " int(1)^(2) f(x) dx is equal to

    Text Solution

    |

  18. int (0)^(2pi) sin^(6) x cos^(5) x dx is equal to

    Text Solution

    |

  19. int (-3pi//2)^(-pi//2) [ ( x + pi)^(3) + cos^(2) x ] dx is equalt to

    Text Solution

    |

  20. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |