Home
Class 12
MATHS
int (0)^(a) sqrt(a^(2) - x^(2)) dx is e...

` int _(0)^(a) sqrt(a^(2) - x^(2))` dx is equal to

A

`pia^(2)`

B

`1/2 pia^(2)`

C

`1/3 pia^(2)`

D

`1/4 pia^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_0^a \sqrt{a^2 - x^2} \, dx \), we can follow these steps: ### Step 1: Identify the Integral We need to evaluate the integral: \[ I = \int_0^a \sqrt{a^2 - x^2} \, dx \] ### Step 2: Use the General Result The integral \( \int \sqrt{a^2 - x^2} \, dx \) has a known result: \[ \int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) + C \] where \( C \) is the constant of integration. ### Step 3: Apply the Limits Now we will apply the limits from \( 0 \) to \( a \): \[ I = \left[ \frac{x}{2} \sqrt{a^2 - x^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{x}{a}\right) \right]_0^a \] ### Step 4: Evaluate at the Upper Limit \( x = a \) Substituting \( x = a \): \[ I = \frac{a}{2} \sqrt{a^2 - a^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{a}{a}\right) \] \[ = \frac{a}{2} \cdot 0 + \frac{a^2}{2} \cdot \frac{\pi}{2} = \frac{a^2 \pi}{4} \] ### Step 5: Evaluate at the Lower Limit \( x = 0 \) Substituting \( x = 0 \): \[ I = \frac{0}{2} \sqrt{a^2 - 0^2} + \frac{a^2}{2} \sin^{-1}\left(\frac{0}{a}\right) \] \[ = 0 + \frac{a^2}{2} \cdot 0 = 0 \] ### Step 6: Combine the Results Now, we combine the results from the upper and lower limits: \[ I = \left( \frac{a^2 \pi}{4} \right) - 0 = \frac{a^2 \pi}{4} \] ### Final Result Thus, the value of the integral is: \[ \int_0^a \sqrt{a^2 - x^2} \, dx = \frac{a^2 \pi}{4} \] ---

To solve the integral \( \int_0^a \sqrt{a^2 - x^2} \, dx \), we can follow these steps: ### Step 1: Identify the Integral We need to evaluate the integral: \[ I = \int_0^a \sqrt{a^2 - x^2} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • DEFINITE INTEGRALS

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|22 Videos
  • CONTINUITY

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|16 Videos
  • DIFFERENTIAL EQUATION

    MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS|Exercise MHT CET Corner|27 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(a)(dx)/(x+sqrt((a^(2)-x^(2))) is equal to

int_(0)^(2) [x^(2)]dx is equal to

int _(0)^(2) sqrt((2+x)/(2-x)) dx is equal to

The value of int(dx)/(x+sqrt(a^(2)-x^(2))) , is equal to

int_(0)^(a)dx/(sqrt(a^2-x^2))

int_(0)^(2) sqrt(2-x)dx .

int_(0)^(a)(dx)/(sqrt(ax-x^(2)))

int_(0)^(15) [x^(2)]dx is equal to

int(1)/(sqrt(8+2x-x^(2)))dx is equal to

int_(0)^(2) sqrt((2+x)/(2-x)) dx

MHTCET PREVIOUS YEAR PAPERS AND PRACTICE PAPERS-DEFINITE INTEGRALS-PRACTICE EXERCISE (Exercise 2) (MISCELLANEOUS PROBLEMS)
  1. The value of overset(5)underset(3)int (x^(2))/(x^(2)-4)dx, is

    Text Solution

    |

  2. The value of int (0)^(pi//2) ((sin x + cos x)^(2))/(sqrt(1+sin 2x) dx...

    Text Solution

    |

  3. int (0)^(a) sqrt(a^(2) - x^(2)) dx is equal to

    Text Solution

    |

  4. The value of int(e^(-1))^(e) (dt)/(t(t+1)) is equal to

    Text Solution

    |

  5. The value of int (1)^(e) 10^(log(e)x) dx is equal to

    Text Solution

    |

  6. If int (2)^(e) (1/(logx)-1/(logx)^(2))dx = a + b/(log2) , then

    Text Solution

    |

  7. int (0)^(oo) (dx)/((x+ sqrt(x^(2)+1))^(3)) is equal to

    Text Solution

    |

  8. The value of the integral int (-pi//2)^(pi//2) sqrt(cos x - cos ^(3) ...

    Text Solution

    |

  9. The value of I=overset(0)underset(-2)int{x^(3)+3x^(2)+3x+3+(x+1)cos(...

    Text Solution

    |

  10. int (alpha)^(beta) sqrt((x-alpha)/(beta -x)) dx is equal to

    Text Solution

    |

  11. Let f(x) be a function satisfyingf'(x)=f(x) withf(0) =1 and g(x) be a ...

    Text Solution

    |

  12. The value overset(2)underset(-2)int {p" In"((1+x)/(1-x))+q" In "((1-...

    Text Solution

    |

  13. Let F (x) = f(x) + f ((1)/(x)), where f (x) = int (1) ^(x ) (log t)/(1...

    Text Solution

    |

  14. If 2f(x) - 3 f(1//x) = x," then " int(1)^(2) f(x) dx is equal to

    Text Solution

    |

  15. int (0)^(2pi) sin^(6) x cos^(5) x dx is equal to

    Text Solution

    |

  16. int (-3pi//2)^(-pi//2) [ ( x + pi)^(3) + cos^(2) x ] dx is equalt to

    Text Solution

    |

  17. int (0)^(3) (3x+1)/(x^(2)+9) dx =

    Text Solution

    |

  18. underset(n to oo)lim underset(r=1)overset(n)sum(1)/(n)e^(r//n) is

    Text Solution

    |

  19. int (-1//2)^(1//2) cos x log ((1+x)/(1-x)) dx = k log 2 , then k equ...

    Text Solution

    |

  20. The value of the integral int (0)^(pi//2) sin ^(5) x dx is

    Text Solution

    |